Answer:
steps below
Step-by-step explanation:
f(x) = x + 5
g(x) = x - 4
f(g(x)) = f(x-4) = (x-4) + 5
Since these two have the same power and variable, you can just subtract right away. It’s going to be 7x^1/5
Answer:
The length of segment AC is two times the length of segment A'C'
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
Let
z ----> the scale factor
A'C' ----> the length of segment A'C'
AC ----> the length of segment AC
so
we have that
---> the dilation is a reduction, because the scale factor is less than 1 and greater than zero
substitute

therefore
The length of segment AC is two times the length of segment A'C'
<h3>
Answer: 2.2 units</h3>
============================================
Explanation:
I'll define these point labels
- B = Blake's starting position
- F = finish line
- C = the third unmarked point of the triangle
The locations of the points are
- B = (-8,1)
- C = (-6,-3)
- F = (4,-2)
Use the distance formula to find the distance from B to C

Segment BC is roughly 4.47214 units long.
Following similar steps, you should find that segment CF is approximately 10.04988 units long.
If Blake doesn't take the shortcut, then he travels approximately BC+CF = 4.47214+10.04988 = 14.52202 units. This is the path from B to C to F in that order.
---------
Use the distance formula again to find the distance from B to F. This distance is about 12.36932 units. He travels this amount if he takes the shortcut.
Subtract this and the previous result we got
14.52202 - 12.36932 = 2.1527
That rounds to 2.2
This is the amount of distance he doesn't have to travel when he takes the shortcut.
In other words, the track is roughly 2.2 units shorter when taking the shortcut.
Side note: Replace "units" with whatever units you're working with (eg: feet or meters).
3x+7=3x+2 (cancel equal terms)
7=2 ( the statement is false)