Dividing by a fraction is equivalent to multiply by its reciprocal, then:

Now, we need to express the quadratic polynomials using their roots, as follows:

where y1 and y2 are the roots.
Applying the quadratic formula to the first polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{7\pm\sqrt[]{(-7)^2-4\cdot3\cdot(-6)}}{2\cdot3} \\ y_{1,2}=\frac{7\pm\sqrt[]{121}}{6} \\ y_1=\frac{7+11}{6}=3 \\ y_2=\frac{7-11}{6}=-\frac{2}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B%28-7%29%5E2-4%5Ccdot3%5Ccdot%28-6%29%7D%7D%7B2%5Ccdot3%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B121%7D%7D%7B6%7D%20%5C%5C%20y_1%3D%5Cfrac%7B7%2B11%7D%7B6%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B7-11%7D%7B6%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the second polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot2\cdot(-3)}}{2\cdot2} \\ y_{1,2}=\frac{-1\pm\sqrt[]{25}}{4} \\ y_1=\frac{-1+5}{4}=1 \\ y_2=\frac{-1-5}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot2%5Ccdot%28-3%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B25%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B5%7D%7B4%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-5%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the third polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{3\pm\sqrt[]{(-3)^2-4\cdot2\cdot(-9)}}{2\cdot2} \\ y_{1,2}=\frac{3\pm\sqrt[]{81}}{4} \\ y_1=\frac{3+9}{4}=3 \\ y_2=\frac{3-9}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B%28-3%29%5E2-4%5Ccdot2%5Ccdot%28-9%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B81%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B3%2B9%7D%7B4%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B3-9%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the fourth polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot1\cdot(-2)}}{2\cdot1} \\ y_{1,2}=\frac{-1\pm\sqrt[]{9}}{2} \\ y_1=\frac{-1+3}{2}=1 \\ y_2=\frac{-1-3}{2}=-2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot1%5Ccdot%28-2%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B9%7D%7D%7B2%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B3%7D%7B2%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-3%7D%7B2%7D%3D-2%20%5Cend%7Bgathered%7D)
Substituting into the rational expression and simplifying:
<u>When we make estimates of or draw conclusions about one or more characteristics of a population based upon the </u><u>sample</u><u>, we are using the process of </u><u>statistical inference</u><u>.</u>
- To estimate this sample to sample variance or uncertainty is the goal of statistical inference.
What is the purpose of statistical inferences ?
- To be able to make inferences about a population based on data from a sample is the goal of statistical inference.
- The process of statistical inference involves selecting a sample, gathering data from that sample, calculating a statistic from the data, and drawing conclusions about the population from that statistic.
How is statistical inference used to draw conclusions?
Estimation and hypothesis testing are components of statistical inference (evaluating a notion about a population using a sample) (estimating the value or potential range of values of some characteristic of the population based on that of a sample).
Learn more about statistical inference
brainly.com/question/3640262
#SPJ4
9514 1404 393
Answer:
19. B -- continued, but modest ...
Step-by-step explanation:
19. There is no decline or decrease indicated on this graph. If growth were exponential, the graph would be concave upward, which it is not. There is continued growth indicated.
__
20. The percentage change from 2005 to 2010 is ...
(60 -20)/20 × 100% = 2 × 100% = 200%
One might compute an average rate of change per year of ...
200%/(5 yr) = 40%/yr
_____
<em>Additional comment</em>
As with any statement of percentage, you need to be very clear about what the base is.
Here, 100% is the number of farms in 2005, so an increase of 40% per year is an increase by 40% of the number in 2005. That is very different from 40% of the number in the previous year, which is how an annual percentage increase is usually interpreted. (The average annual rate of change is closer to 24% with respect to the previous year's number.)
Answer: Add 11 to the other side of the equation, giving you 81. Then, since x is square you are going to need to square root both sides (
this symbol). When you do that, you should get what x is! Let me know if you still need help!