Answer:
b option mass will not change based on location while weight will changr based on gravitational pull
bcz in the formula of weight w=mg
so w is directly proportional to g
Answer:
C Or D
Explanation:
The Child Should Get Checked On Before You Call The Police Thought,
Answer:
The center of mass of the two-block system is staying the same and it can be explained with the help of linear momentum equation.
Explanation:
The center of mass of the two-block system is staying the same and it can be explained with the help of linear momentum equation.
Equation:
P=mv
This equation holds if no external force is acting on the system it means the momentum of the system is constant.
In our case, there is no external force which means the total momentum of system is constant:
P=constant
Total mass of system is also constant:
m=constant
It means the velocity of the system is constant (from above equation) thus center of mass of the two-block system is staying the same
Two vectors of unequal magnitude can never sum to zero. If they point along the same line, since their magnitudes are different, the sum will not be zero.
To solve this problem we will apply the concepts related to the conservation of momentum. This can be defined as the product between the mass and the velocity of each object, and by conservation it will be understood that the amount of the initial momentum is equal to the amount of the final momentum. By the law of conservation of momentum,

Here,
= Mass of Basketball
= Mass of Tennis ball
= Initial velocity of Basketball
= Initial Velocity of Tennis ball
= Final velocity of Basketball
= Final velocity of the tennis ball
Replacing,

Solving for the final velocity of the tennis ball

Therefore the velocity of the tennis ball after collision is 11 m/s