The correct answer for the question that is being presented above is this one: "(a)4." Suppose that during any period of 1/4 second there is one instant at which the crests or troughs of component waves are exactly in phase and maximum <span>reinforcement occurs, in 1 second, there will be 4 beats.</span>
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + 13 x 2
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]
Explanation:
after 5 seconds, the velocity is (5s)(3m/s²) = 15m/s
The displacement after 5s is
x=vo + (1/2)at²
x = 0 + (1/2)(3m/s²)(5s)(5s)
x= 37.5 m
821
s
s
s
s
s
s
s
s
s
s
s
s
ws
asd
asd
asd
asd
ad
a
sda
d
≥≡³
Answer:
50 lb
Explanation:
Given,
The weight of astronaut's life support backpack on Earth (w) = 300 lb
Acceleration due to gravity on Earth (g) = 9.8 m/s²
Acceleration due to gravity on Moon = g'

We know that weight of an object on Earth is,


Similarly, weight on Moon will be




Thus the astronaut's life support backpack will weigh 50 lb on Moon.