Answer:
The answer to your question is x = 3; y = 3
Step-by-step explanation:
Data
angle = 45°
Opposite side = x
Adjacent side = y
hypotenuse = 3√2
To solve this problem, use trigonometric functions.
1) To find x, use the trigonometric function sine.
sin Ф = Opposite side / hypotenuse
-Solve for Opposite side (x)
Opposite side = hypotenuse x sin Ф
-Substitution
Opposite side = 3√2 sin 45
-Simplification
Opposite side = 3√2 (1 / √2)
Opposite side = 3(1)
-Result
x = 3
2) To find y use the trigonometric function cosine
cos Ф = Adjacent side / hypotenuse
-Solve for Adjacent side
Adjacent side = hypotenuse x cos Ф
-Substitution
Adjacent side = 3√2 x cos 45
-Simplification
Adjacent side = 3√2 x (1/√2)
Adjacent side = 3(1)
-Result
y = 3
Answer:
Third option.
Step-by-step explanation:
You need to cube both sides of the equation. Remember the Power of a power property:

![\sqrt[3]{162x^cy^5}=3x^2y(\sqrt[3]{6y^d})\\\\(\sqrt[3]{162x^cy^5})^3=(3x^2y(\sqrt[3]{6y^d}))^3\\\\162x^cy^5=27x^6y^36y^d](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%3D3x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%5C%5C%5C%5C%28%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%29%5E3%3D%283x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%29%5E3%5C%5C%5C%5C162x%5Ecy%5E5%3D27x%5E6y%5E36y%5Ed)
According to the Product of powers property:

Then. simplifying you get:

Now you need to compare the exponents. You can observe that the exponent of "x" on the right side is 6, then the exponent of "x" on the left side must be 6. Therefore:

You can notice that the exponent of "y" on the left side is 5, then the exponent of "x" on the left side must be 5 too. Therefore "d" is:
