If I throw a die, find the probability of throwing an odd number or a number less than 3.
1 answer:
If you throw a die, this is what you could get:
1, 2, 3, 4, 5 or 6.
--------------
Odd Numbers: 1, 3, 5
Numbers less than Three: 1, 2
---------------
Possibility of getting 1, 2, 3 or 5:
4/6 which translates into 2/3.
---------------
Answer:
2/3
You might be interested in
It's the first choice.Correlation that implies causation
Answer:
y=1/2x+2
Step-by-step explanation:
Answer:
Hello,
Step-by-step explanation:
We divide the interval [a b] in n equal parts.
![\Delta x=\dfrac{b-a}{n} \\\\x_i=a+\Delta x *i \ for\ i=1\ to\ n\\\\y_i=x_i^2=(a+\Delta x *i)^2=a^2+(\Delta x *i)^2+2*a*\Delta x *i\\\\\\Area\ of\ i^{th} \ rectangle=R(x_i)=\Delta x * y_i\\](https://tex.z-dn.net/?f=%5CDelta%20x%3D%5Cdfrac%7Bb-a%7D%7Bn%7D%20%5C%5C%5C%5Cx_i%3Da%2B%5CDelta%20x%20%2Ai%20%5C%20for%5C%20i%3D1%5C%20to%5C%20n%5C%5C%5C%5Cy_i%3Dx_i%5E2%3D%28a%2B%5CDelta%20x%20%2Ai%29%5E2%3Da%5E2%2B%28%5CDelta%20x%20%2Ai%29%5E2%2B2%2Aa%2A%5CDelta%20x%20%2Ai%5C%5C%5C%5C%5C%5CArea%5C%20of%5C%20i%5E%7Bth%7D%20%5C%20rectangle%3DR%28x_i%29%3D%5CDelta%20x%20%2A%20y_i%5C%5C)
![\displaystyle \sum_{i=1}^{n} R(x_i)=\dfrac{b-a}{n}*\sum_{i=1}^{n}\ (a^2 +(\dfrac{b-a}{n})^2*i^2+2*a*\dfrac{b-a}{n}*i)\\](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20R%28x_i%29%3D%5Cdfrac%7Bb-a%7D%7Bn%7D%2A%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5C%20%20%28a%5E2%20%2B%28%5Cdfrac%7Bb-a%7D%7Bn%7D%29%5E2%2Ai%5E2%2B2%2Aa%2A%5Cdfrac%7Bb-a%7D%7Bn%7D%2Ai%29%5C%5C)
![=(b-a)^2*a^2+(\dfrac{b-a}{n})^3*\dfrac{n(n+1)(2n+1)}{6} +2*a*(\dfrac{b-a}{n})^2*\dfrac{n (n+1)} {2} \\\\\displaystyle \int\limits^a_b {x^2} \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} R(x_i)\\\\=(b-a)*a^2+\dfrac{(b-a)^3 }{3} +a(b-a)^2\\\\=a^2b-a^3+\dfrac{1}{3} (b^3-3ab^2+3a^2b-a^3)+a^3+ab^2-2a^2b\\\\=\dfrac{b^3}{3}-ab^2+ab^2+a^2b+a^2b-2a^2b-\dfrac{a^3}{3} \\\\\\\boxed{\int\limits^a_b {x^2} \, dx =\dfrac{b^3}{3} -\dfrac{a^3}{3}}\\](https://tex.z-dn.net/?f=%3D%28b-a%29%5E2%2Aa%5E2%2B%28%5Cdfrac%7Bb-a%7D%7Bn%7D%29%5E3%2A%5Cdfrac%7Bn%28n%2B1%29%282n%2B1%29%7D%7B6%7D%20%2B2%2Aa%2A%28%5Cdfrac%7Bb-a%7D%7Bn%7D%29%5E2%2A%5Cdfrac%7Bn%20%28n%2B1%29%7D%20%7B2%7D%20%5C%5C%5C%5C%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7Bx%5E2%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20R%28x_i%29%5C%5C%5C%5C%3D%28b-a%29%2Aa%5E2%2B%5Cdfrac%7B%28b-a%29%5E3%20%7D%7B3%7D%20%2Ba%28b-a%29%5E2%5C%5C%5C%5C%3Da%5E2b-a%5E3%2B%5Cdfrac%7B1%7D%7B3%7D%20%28b%5E3-3ab%5E2%2B3a%5E2b-a%5E3%29%2Ba%5E3%2Bab%5E2-2a%5E2b%5C%5C%5C%5C%3D%5Cdfrac%7Bb%5E3%7D%7B3%7D-ab%5E2%2Bab%5E2%2Ba%5E2b%2Ba%5E2b-2a%5E2b-%5Cdfrac%7Ba%5E3%7D%7B3%7D%20%20%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cint%5Climits%5Ea_b%20%7Bx%5E2%7D%20%5C%2C%20dx%20%3D%5Cdfrac%7Bb%5E3%7D%7B3%7D%20-%5Cdfrac%7Ba%5E3%7D%7B3%7D%7D%5C%5C)
The answer would be 120 degrees
-12,-4.3,-4,1.2,9 this is the answer