Answer: Order from Least to Greatest
2/6 < 4/10 < 5/12 < 3/7
Step-by-step explanation:
Answer:
x=0
Step-by-step explanation:
Answer:
The Fundamental Theorem of Algebra assures that any polynomial f(x)=0 whose degree is n ≥1 has at least one Real or Imaginary root. So by the Theorem we have infinitely solutions, including imaginary roots ≠ 2i
Step-by-step explanation:
1) This claim is mistaken.
2) The Fundamental Theorem of Algebra assures that any polynomial f(x)=0 whose degree is n ≥1 has at least one Real or Imaginary root. So by the Theorem we have infinitely solutions, including imaginary roots ≠ 2i with real coefficients.

For example:
3) Every time a polynomial equation, like a quadratic equation which is an univariate polynomial one, has its discriminant following this rule:

We'll have <em>n </em>different complex roots, not necessarily 2i.
For example:
Taking 3 polynomial equations with real coefficients, with


2.2) For other Polynomial equations with real coefficients we can see other complex roots ≠ 2i. In this one we have also -2i

Angle 1 = 96
angle 2 = 36
angle 3 = 48