Answer:
x = 10
y = 6
Step-by-step explanation:
<u>Vertical Angle Theorem</u>: When two straight lines intersect, the opposite vertical angles are always equal to each other.
⇒ m∠1 = m∠3 and m∠2 = m∠4
⇒ m∠1 = m∠3
⇒ 10x = 100
⇒ x = 10
<u>Linear pair:</u> Two adjacent angles which sum to 180°.
⇒ m∠1 + m∠2 = 180°
⇒ m∠3 + m∠4 = 180°
⇒ 100 + 10y + 20 = 180
⇒ 120 + 10y = 180
⇒ 10y = 60
⇒ y = 6
Answer:
B - 11 > (w - 4)²
C - y < 3⁴
D - 5 + 9 < 5 · 9
are your correct answers
Step-by-step explanation:
x² - 5x + 6 and z + 11 / 2z - 1 are equalities phrases and rest of them will be inequalities.
HOPE THIS HELPS YOU
Follw me = 10 thanks
Mark as brainliest = 10 thanks
1 thanks to me = 2 thanks
The answer is: [C]: " ⁷/₆ " .
____________________________________
Note:
____________________________________
(5/3) - (1/2) = ? ;
____________________________________
The LCD (lowest common denominator) of "2 and 3" is "6" ;
So we need to rewrite EACH fraction in the problem as a fraction with "6" in the denominator ;
____________________________
(5/3) = (?/6) ? ; (6÷3=2) ; (5/3) = (5*2)/(3*2) = 10/6 ;
____________________________
(1/2) = (?/6) ? ; (6÷2=3) ; (1/2) = (1*3)/(2*3) = 3/6 ;
____________________________
Rewrite the problem: " (5/3) - (1/2) " ; as:
____________________________
10/6 - 3/6 ;
____________________________________________
10/6 - 3/6 = (10 - 3) / 6 = (7/6) = 1 ⅙ .
____________________________________________
The answer is: " ⁷/₆ " ; or, write as: " 1 ⅙ " ; which corresponds to:
______________________________________________________
Answer choice: [C]: " ⁷/₆ " .
____________________________________________
solution:
Z1 = 5(cos25˚+isin25˚)
Z2 = 2(cos80˚+isin80˚)
Z1.Z2 = 5(cos25˚+isin25˚). 2(cos80˚+isin80˚)
Z1.Z2 = 10{(cos25˚cos80˚ + isin25˚cos80˚+i^2sin25˚sin80˚) }
Z1.Z2 =10{(cos25˚cos80˚- sin25˚sin80˚+ i(cos25˚sin80˚+sin25˚cos80˚))}
(i^2 = -1)
Cos(A+B) = cosAcosB – sinAsinB
Sin(A+B) = sinAcosB + cosAsinB
Z1.Z2 = 10(cos(25˚+80˚) +isin(25˚+80˚)
Z1.Z2 = 10(cos105˚+ isin105˚)
Answer:
Here,
x + 25° + 3x + 95° + 80°=360° (Sum of angles of a quadrilateral is 360°)
or,x+3x + 25° + 95° + 80° =360°
or,4x + 200 = 360°
or,4x = 360 - 200
or,4x = 160
or,x = 160÷4
or,x = 40
Now,
Angle K = (x + 25)° = 40 + 25° = 65°
Angle L = 3x° = 3 × 40° = 120°