To draw the median of the triangle from vertex A, the mid point of BC must be determined. The median of the vertex A is given at (-1/2, 1). See explanation below.
<h3>How you would draw the median of the triangle from vertex A?</h3>
Recall that B = (3, 7)
and C = (-4, -5).
- Note that when you are given coordinates in the format above, B or C = (x, y)
- Hence the mid point of line BC is point D₁ which is derived as:
D₁
, ![(\frac{7-5}{2}) ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B7-5%7D%7B2%7D%29%20%5D)
- hence, the Median of the Vertex A = (-1/2, 1).
Connecting D' and A gives us the median of the vertex A. See attached graph.
<h3>What is the length of the median from C to AB?</h3>
Recall that
A → (4, 2); and
B → (3, 7)
Hence, the Midpoint will be
, ![(\frac{2+7}{2} )]](https://tex.z-dn.net/?f=%28%5Cfrac%7B2%2B7%7D%7B2%7D%20%29%5D)
→ 
Recall that
C → (-4, 5)
Hence,
= ![\sqrt{[(-4 -\frac{7}{2} })^{2} + (-5-\frac{9}{2} )^{2} ]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%28-4%20-%5Cfrac%7B7%7D%7B2%7D%20%7D%29%5E%7B2%7D%20%20%2B%20%28-5-%5Cfrac%7B9%7D%7B2%7D%20%29%5E%7B2%7D%20%5D)
Simplified, the above becomes
= √(586)/2)
= 24.2074/2
= 12.1037
The length of the Median from C to AB ≈ 12
Learn more about Vertex at;
brainly.com/question/1435581
#SPJ1
Area is length x width.
With this one, what we have to do is work out the area of the larger square and the smaller, inside square, and take one from the other.
The larger one is 14 x 14 = 196.
The smaller one is 8 x 8 = 64
So, 196 - 64 = 132m²
Answer:
x=0, y=4
x=2, y=5
x=4, y=6
x=6, y=7
x=8, y=8
x=10, y=9
For every x value goes up one, the y value goes up 2.
Step-by-step explanation:
Please mark brainliest and have a great day!
Answer:N=6
Step-by-step explanation:Hope this helps:)
Answer:
mode=most common answer
Step-by-step explanation:
1.12
2.9
3.1.8
4.56
5.5.9