1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
3 years ago
9

Use Lagrange multipliers to find the maximum and minimum values of (i) f(x,y)-81x^2+y^2 subject to the constraint 4x^2+y^2=9. (i

i) f(x,y,z)=y^2-10z subject to the constraint x^2+y^2+z^2=36
Mathematics
1 answer:
sp2606 [1]3 years ago
5 0

i. The Lagrangian is

L(x,y,\lambda)=81x^2+y^2+\lambda(4x^2+y^2-9)

with critical points whenever

L_x=162x+8\lambda x=0\implies2x(81+4\lambda)=0\implies x=0\text{ or }\lambda=-\dfrac{81}4

L_y=2y+2\lambda y=0\implies2y(1+\lambda)=0\implies y=0\text{ or }\lambda=-1

L_\lambda=4x^2+y^2-9=0

  • If x=0, then L_\lambda=0\implies y=\pm3.
  • If y=0, then L_\lambda=0\implies x=\pm\dfrac32.
  • Either value of \lambda found above requires that either x=0 or y=0, so we get the same critical points as in the previous two cases.

We have f(0,-3)=9, f(0,3)=9, f\left(-\dfrac32,0\right)=\dfrac{729}4=182.25, and f\left(\dfrac32,0\right)=\dfrac{729}4, so f has a minimum value of 9 and a maximum value of 182.25.

ii. The Lagrangian is

L(x,y,z,\lambda)=y^2-10z+\lambda(x^2+y^2+z^2-36)

with critical points whenever

L_x=2\lambda x=0\implies x=0 (because we assume \lambda\neq0)

L_y=2y+2\lambda y=0\implies 2y(1+\lambda)=0\implies y=0\text{ or }\lambda=-1

L_z=-10+2\lambda z=0\implies z=\dfrac5\lambda

L_\lambda=x^2+y^2+z^2-36=0

  • If x=y=0, then L_\lambda=0\implies z=\pm6.
  • If \lambda=-1, then z=-5, and with x=0 we have L_\lambda=0\implies y=\pm\sqrt{11}.

We have f(0,0,-6)=60, f(0,0,6)=-60, f(0,-\sqrt{11},-5)=61, and f(0,\sqrt{11},-5)=61. So f has a maximum value of 61 and a minimum value of -60.

You might be interested in
Please would someone be able to give the answer to this Thankyou
sdas [7]

Answer:

6×6 =36 this will answer

7 0
2 years ago
Read 2 more answers
Identify the vertices of the feasible region and use them to find the maximum and/or minimum value for the given linear programm
Ghella [55]

The maximum value of the objective function is 26 and the minimum is -10

<h3>How to determine the maximum and the minimum values?</h3>

The objective function is given as:

z=−3x+5y

The constraints are

x+y≥−2

3x−y≤2

x−y≥−4

Start by plotting the constraints on a graph (see attachment)

From the attached graph, the vertices of the feasible region are

(3, 7), (0, -2), (-3, 1)

Substitute these values in the objective function

So, we have

z= −3 * 3 + 5 * 7 = 26

z= −3 * 0 + 5 * -2 = -10

z= −3 * -3 + 5 * 1 =14

Using the above values, we have:

The maximum value of the objective function is 26 and the minimum is -10

Read more about linear programming at:

brainly.com/question/15417573

#SPJ1

4 0
2 years ago
QUICK !!!
Alexxx [7]
Looks to me like y= x + 1
5 0
3 years ago
Iq scores are normally distributed with a mean of 100 and a standard deviation of 15 what is the probability that a randomly sel
a_sh-v [17]
So we are given the mean and the s.d.. The mean is 100 and the sd is 15 and we are trying the select a random person who has an I.Q. of over 126. So our first step is to use our z-score equation:

z = x - mean/s.d.

where x is our I.Q. we are looking for

So we plug in our numbers and we get:

126-100/15 = 1.73333

Next we look at our z-score table for our P-value and I got 0.9582

Since we are looking for a person who has an I.Q. higher than 126, we do 1 - P. So we get

1 - 0.9582 = 0.0418

Since they are asking for the probability, we multiply our P-value by 100, and we get 

0.0418 * 100 = 4.18%

And our answer is

4.18% that a randomly selected person has an I.Q. above 126
Hopes this helps!
6 0
3 years ago
Please help me I need to solve for x.
Sav [38]
Answer: x=7

12x-4=0.5(22x+6)
12x-4=11x+3
-11x -11x
x=7

Explanation: use the tangent-chord angle theorem.
4 0
3 years ago
Other questions:
  • A transformation T : (x, y) (x + 3, y + 1).
    12·2 answers
  • Someone help please i dont know how to do this
    7·1 answer
  • Which function below has the lowest y intercept?
    9·1 answer
  • Look at the graph of the function y = 5x. Which statement is true?
    5·1 answer
  • Suppose there are two independent economic factors, M1 and M2. The risk-free rate is 4%, and all stocks have independent firm-sp
    10·1 answer
  • Jason invests money in an account paying simple interest. He invests $160 and no money is added or removed from the investment.
    12·2 answers
  • I need help it’s fraction percentage
    7·1 answer
  • PLEASE HELP ITS DUE SOON! WILL GIVE BRAINLIST!!
    9·2 answers
  • The inequality x ≥ -3 is satisfied by point (0, -2). TrueFalse
    5·2 answers
  • A financial planner has a client with $15,000 to invest. If he invests $10,000 in a certificate of deposit paying 12% annual sim
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!