The list of choices you provided with your question
is utterly devoid of any such examples.
Answer:
B. 1200
Explanation:
60 sec in one min in 2 min there will be 120 sec. 10x120=1200
From the calculation, the gravitational force of attraction is 1.33 * 10^-14 N.
<h3>What is the gravitational force?</h3>
The gravitational force is an attractive force that acts between any two masses.
It is given by;
F = Gm1m2/r^2
F = 6.67 * × 10−11 * 2.5 * 5/(250)^2
F = 83.4 × 10−11 /62500
F= 1.33 * 10^-14 N
Learn more about gravitational force:brainly.com/question/12528243
#SPJ1
The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
Answer:
The well is 7.1 meters deep.
Explanation:
The formula to use here is the distance in a uniformly accelerated motion:

where d stands for distance, t for time, a for acceleration, v0 and d0 for initial velocity and distance, respectively. Since the initial distance and velocity are both zero, we are left with the first term. The coin is in free fall and so it is accelerated by gravity:

The well is 7.1 meters deep.