Answer:
4.78 second
Explanation:
given data
vertical cliff = 41 m
height = 112 m
solution
we know here time taken to fall vertically from the cliff = time taken to move horizontally ..........................1
so we use here vertical component of ball
and that is accelerated motion with initial velocity = 0
so we can solve for it as
height = 0.5 × g × t² ........................2
put here value
112 = 0.5 × 9.8 × t²
solve it we get
t² = 22.857
t = 4.78 second
ball thrown horizontally from the top of the cliff in 4.78 second
Answer:
a = 0 m/s²
Explanation:
given,
car moving at steady velocity = 100 Km/h
1 km/h = 0.278 m/s
100 Km/h = 27.8 m/s
time of acceleration = 100 s
acceleration is equal to change in velocity per unit time.

change in velocity of the car is 27.8 - 27.8 = 0

a = 0 m/s²
If the car is moving with steady velocity then acceleration of the car is zero.
Hence, the acceleration of the car is equal to a = 0 m/s²
Answer:
true b and c
Explanation:
n the electromechanical transitions of the atoms the relationship must be fulfilled
= R (1 / nf - 1 / no²)
where for the final state nf = 1 giving in the case of hydrogen the Lymma series whose smallest wavelength is lam = 122 nm with nf = 1 and there are a series of spectral lines for each value of n of the final state
in the case of sodium so well it has a transition from an excited state to the kiss state (bad)
Now let's review the different proposals
a) False. The electronic potential for sodium is much lower than for hydrognosia
b) True
c) True
d) true
the study of how matter and energy interact
the study of the natural world around us
the study of human bodies and how they move