Answer:
x=0
Step-by-step explanation:
substitute y=0
0= -x^2
then swap the sides
-x^2=0 ,
change the signs
x^2=0
set the base equal to 0
x=0
Answer: To simplify this problem you combine the like terms in the equation (numbers with the same variables.)
Demo: 12r + -4r = 8r
Answer:
{4 + 2√3, 4 - 2√3} thus the solution is A. x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3)
Step-by-step explanation:
Solve for x over the real numbers:
(x - 4)^2 = 12
Take the square root of both sides:
x - 4 = 2 sqrt(3) or x - 4 = -2 sqrt(3)
Add 4 to both sides:
x = 4 + 2 sqrt(3) or x - 4 = -2 sqrt(3)
Add 4 to both sides:
Answer: x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3)
Lila did it correctly. The answer is 324
Following PEMDAS, we first focus on the parenthesis. So we simplify 9-3 to get 6
So we go from
18*4^2+(9-3)^2
to
18*4^2+6^2
The next step is applying exponents. In this case, squaring the terms, so we go from
18*4^2+6^2
to
18*16+36
Next is multiplying
18*16+36
turns into
288+36
Finally, add up 288 and 36 to get 288+36 = 324
That confirms that Lila is correct
----------------------
The error that Rob made is that he computed 18*4^2+9^2-3^2 but it is NOT correct. Saying (x-y)^2 = x^2-y^2 isn't a true equation for all x and y. Again you have to simplify what is in the parenthesis first, and then you can square it. Or you must use the FOIL rule to expand out (9-3)^2

![\large\begin{array}{l} \textsf{a) }\mathsf{(f\circ g)(x)}\\\\ =\mathsf{f\big[g(x)\big]}\\\\ =\mathsf{\big[g(x)\big]^2-6\cdot g(x)+2}\\\\ =\mathsf{\big[\sqrt{x}\big]^2-6\sqrt{x}+2}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(f\circ g)(x)=x-6\sqrt{x}+2} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Ba%29%20%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bf%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5Bg%28x%29%5Cbig%5D%5E2-6%5Ccdot%20g%28x%29%2B2%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5B%5Csqrt%7Bx%7D%5Cbig%5D%5E2-6%5Csqrt%7Bx%7D%2B2%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%3Dx-6%5Csqrt%7Bx%7D%2B2%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
![\large\begin{array}{l} \textsf{b) }\mathsf{(g\circ f)(-2)}\\\\ =\mathsf{g\big[f(-2)\big]}\\\\ =\mathsf{\sqrt{f(-2)}}\\\\ =\mathsf{\sqrt{(-2)^2-6\cdot (-2)+2}}\\\\ =\mathsf{\sqrt{4+12+2}}\\\\ =\mathsf{\sqrt{18}}\\\\ =\mathsf{\sqrt{3^2\cdot 2}}\\\\ =\mathsf{3\sqrt{2}}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(g\circ f)(-2)=3\sqrt{2}} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Bb%29%20%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bg%5Cbig%5Bf%28-2%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7Bf%28-2%29%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B%28-2%29%5E2-6%5Ccdot%20%28-2%29%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B4%2B12%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B18%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B3%5E2%5Ccdot%202%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B3%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%3D3%5Csqrt%7B2%7D%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2181559
Tags: <em>composite function composition evaluate algebra</em>