Answer:
Earth's atmosphere is roughly 78 percent nitrogen and 21 percent oxygen, with trace amounts of water, argon, carbon dioxide and other gases. Nowhere else in the solar system is there an atmosphere loaded with free oxygen, which is vital to one of the other unique features of Earth: life
Answer:
The two problems that the transfer of information from DNA to protein must overcome are:
- How to bring the information from the nuclear DNA to the place of protein synthesis?
- How to convert this DNA information into amino acids and then into proteins?
Explanation:
The genetic information is found in the DNA and depends on a specific sequence of nitrogenous bases. This information is transcribed into the messenger RNA, whose base sequence is organized into triplets and codons, each of which encodes an amino acid, as well as establishing the pattern for starting and stopping the synthesis of a protein.
<h3 /><h3>How to bring the information from the nuclear DNA to the place of protein synthesis?</h3>
The DNA must be transcribed into messenger RNA (mRNA), a process that occurs in the nucleus of the cell. mRNA leaves the nucleus and travels to the cytoplasm, where amino acid synthesis will take place.
<h3 /><h3>How to convert this DNA information into amino acids and then into proteins?</h3>
Once in the cytoplasm mRNA binds to ribosomes, structures in charge of translating the sequence of nitrogenous bases RNA to synthesize amino acids. The set of ribosomes and rough endoplasmic reticulum are in charge of the assembly of amino acids to produce peptides and proteins.
C. ATP releases energy as a phosphate bond is broken.
Adenosine triphosphaste is name as such because it contains three phosphate bonds, the third one weaker than the other two. The third bond breaks off leaving two phospates behind. ATP, then, becomes adenosine diphosphate (ADP).
Answer:
B but i might be wrong i dont think its A or D though