Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
Answer:
A. Metalloid
E. Has similar properties as Ge
F. Belongs to Period 3
Explanation:
Silicon is the 14th element on the periodic table. Its unit is SI. Its properties straddles between those of metals and non-metals and it is described as a non-metal.
It's atomic weight or mass number is 28u. It has an atomic number of 14 i.e in its neutral state, the number of protons and electrons are equal to 14.
Silicon belongs to the 4th group and the 3rd period on the periodic table. Elements in the same group share similar chemical properties. The elements in Si group are: C, Ge, Sn and Pb. The properties of Si is similar to these elements because they all have a valency of 4. Across the period, the properties varies this is why Si would have a very different property from Al and P.
Answer:
The catalyzed reaction will take 2.85 seconds to occur.
Explanation:
The activation energy of a reaction is given by:
For the reaction without catalyst we have:
(1)
And for the reaction with the catalyst:
(2)
Assuming that frequency factor (A) and the temperature (T) are constant, by dividing equation (1) with equation (2) we have:
Since the reaction rate is related to the time as follow:
And assuming that the initial concentrations ([R]) are the same, we have:
Therefore, the catalyzed reaction will take 2.85 seconds to occur.
I hope it helps you!
Answer:
2.28bar
Explanation: Boyle's law P1V1=P2V2 manipulate formula in favor of V2 the new formula should beP1V1/V2
0.895*318/125=2.2768 but to same sigfig it is 2.28
2.55 moles H20 will be produced