Explanation:
According to Le Chatelier's principle, any disturbance caused in an equilibrium reaction will shift the equilibrium in a direction that will oppose the change.
As the given reaction is as follows.

(a) When increase the temperature of the reactants or system then equilibrium will shift in forward direction where there is less temperature. It is possible for an endothermic reaction.
Thus, formation of
will increase.
- (b) When we decrease the volume (at constant temperature) of given reaction mixture then it implies that there will be increase in pressure of the system. So, equilibrium will shift in a direction where there will be decrease in composition of gaseous phase. That is, in the backward direction reaction will shift.
Hence, formation of
will decrease with decrease in volume.
- When we increase the mount of
then equilibrium will shift in the direction of decrease in concentration that is, in the forward direction.
Thus, we can conclude that formation of
will increase then.
I can’t see the choices can you take another picture of this assignment please so i can help you
Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm
Answer:
55.3 × 10²³ molecules
Explanation:
Given data:
Number of moles of C₁₁H₁₂O₂₂ = 9.18 mol
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
For given data:
9.18 mol × 6.022 × 10²³ molecules /1 mol
55.3 × 10²³ molecules
Hydrogen bonds<span> hold the paired nitrogenous bases together. Because </span>hydrogen bonds<span> are weak </span>bonds<span>, the two strands of </span>DNA<span> are easily separated a characteristic that is important to </span>DNA's<span> function.</span>Hydrogen bonds<span> form between adenine and thymine and between cytosine and guanine.</span>