<span>The glacial sediment is known as glacial till.
Glacial till is derived from entrainment and erosion of material by the moving ice of the glacier.
It is being deposited a distance down -ice to form ground moraines, medical, lateral, and terminal. Glacial till is divided into primary deposits which are rewarded by fluvial transport.
The large rock which is transported by a glacier is called moraines. Moraines are formed from debris which is previously carried along by a glacier and consists of rounded particles which range in size from the large boulders.
Moraines are of different types, for example, ground moraines, lateral moraines, and recessional moraine.</span>
Answer:
Variation, in biology, any difference between cells, individual organisms, or groups of organisms of any species caused either by genetic differences (genotypic variation) or by the effect of environmental factors on the expression of the genetic potentials (phenotypic variation). Variation may be shown in physical appearance, metabolism, fertility, mode of reproduction, behaviour, learning and mental ability, and other obvious or measurable characters.
chromosomes or by differences in the genes carried by the chromosomes. Eye colour, body form, and disease resistance are genotypic variations. Individuals with multiple sets of chromosomes are called polyploid; many common plants have two or more times the normal number of chromosomes, and new species may arise by this type of variation. A variation cannot be identified as genotypic by observation of the organism; breeding experiments must be performed under controlled environmental conditions to determine whether or not the alteration is inheritable.
Genotypic variations are caused by differences in number or structure of Environmentally caused variations may result from one factor or the combined effects of several factors, such as climate, food supply, and actions of other organisms. Phenotypic variations also include stages in an organism’s life cycle and seasonal variations in an individual. These variations do not involve any hereditary alteration and in general are not transmitted to future generations; consequently, they are not significant in the process of evolution.
Explanation:
Brainliest please?
That way they can get the average result and they're usually more accurate.
Answer: Four amino acids.
Explanation:
RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) are polymers made up of long chains of nucleotides. Thus, a nucleotide is the basic building block of nucleic acids and consists of a sugar molecule (ribose in RNA or deoxyribose in DNA) linked to a phosphate group and a nitrogenous base. <u>The nitrogenous bases can be Adenine (A), Thymine (T), Cytosine (C), Guanine (G) or Uracil (U) replacing T in RNA</u>. DNA is the molecule that stores the genetic information to synthesize polypeptides or proteins (set of amino acids). When proteins need to be created, DNA is transcribed into RNA and this RNA is translated in ribosomes to create polypeptides.
Complementarity is the ability to combine with their complement. A and T (or U) are complementary, while C and G are complementary to each other. Complementarity is the principle of replication and transcription, because it is a propery of both DNA and RNA sequences. Their the nucleotide bases at each position of the sequences are complementary, allowing cells to copy information.
Nucleotides in RNA are grouped into codons, which consist of groups of 3 nucleotides where each codon codes for an amino acid. Therefore, <u>the sequence of bases in nucleic acids determines which protein will be synthesized</u>. Protein synthesis begins with a start codon (AUG, which codes for the amino acid methionine) and ends with a stop codon (UGA, UAG and UAA). So, if there are 15 nucleotides, there are 15 bases. Since they are grouped in groups of 3, we will have a polypeptide of 4 amino acids.
<u>3 nucleotides form a codon, so 12 nucleotides form 4 codons giving 4 amino acids. The last codon, is formed by the last 3 nucleotides and form the stop codon that stop protein synthesis</u>.
Energy is usually liberated from the ATP molecule to do work in the cell by a reaction that removes one of the phosphate-oxygen groups, leaving adenosine diphosphate (ADT). When the ATP converts to ADP, the ATP is said to be spent.