Answer:

Step-by-step explanation:
The formula for a circle of radius r centered at (h, k) is ...
(x -h)^2 +(y -k)^2 = r^2
Both of the given points are on the line y=-1. The distance between them is the difference of their x-coordinates, 2 -(-2) = 4. So, the radius of the circle is 4 and the equation becomes ...
(x -2)^2 +(y -(-1))^2 = 4^2
(x -2)^2 +(y +1)^2 = 16 . . . . . . . . . matches choice A
Answer:
-2
Assumption:
Find the value of x such that
.
Step-by-step explanation:



Combine like terms:

This is not too bad too factor on the left hand side since 2(2)=4 and 2+2=4.


So we need to solve:

Subtract 2 on both sides:

Let's check:






0 was the desired output of
.
It should be 13 since 13+8 = 21. 21-7 = 13
1.) f(x)=7(b)^x-2
x=0→f(0)=7(b)^0-2=7(1)-2=7-2→f(0)=5→(x,f(x))=(0,5) Ok
2.) f(x)=-3(b)^x-5
x=0→f(0)=-3(b)^0-5=-3(1)-5=-3-5→f(0)=-8→(x,f(x))=(0,-8) No
3.) f(x)=5(b)^x-1
x=0→f(0)=5(b)^0-1=5(1)-1=5-1→f(0)=4→(x,f(x))=(0,4) No
4.) f(x)=-5(b)^x+10
x=0→f(0)=-5(b)^0+10=-5(1)+10=-5+10→f(0)=5→(x,f(x))=(0,5) Ok
5.) f(x)=2(b)^x+5
x=0→f(0)=2(b)^0+5=2(1)+5=2+5→f(0)=7→(x,f(x))=(0,7) No
Answers:
First option: f(x)=7(b)^x-2
Fourth option: f(x)=-5(b)^x+10
Answer:
2
Step-by-step explanation:
f(x)=2x^2+9x-5
When we are find how many times it intersects the x axis, we are finding the zero's. Set the equation equal to zero
0=2x^2+9x-5
Factor the equation
0 = (2x+1) (x-5)
2*1
1*-5 = -5
2*-5 +1*1 = -9
This checks for the first last and middle terms so we factored correctly
Then using the zero product property
2x+1 = 0 and x-5 =0
2x = -1 x=5
x = -1/2 and x=5
This function crosses the x axis 2 times