Answer:

✐ En matemáticas, una variable es un símbolo que funciona como marcador de posición para expresiones o cantidades que pueden variar o cambiar; se utiliza a menudo para representar el argumento de una función o un elemento arbitrario de un conjunto. Además de los números, las variables se utilizan comúnmente para representar vectores, matrices y funciones.
Answer:
V= 42.41
Step-by-step explanation:

where r is the radius = 3 and h is the height = 4.5
×
× 
V = 42.41
222 ..........................................
Answer:
Step-by-step explanation:
If you have a square of side
, its diagonal would be
, and its area 
If the big square has a area of 900, this implies that its side is
, so the two diagonal of squares 2 and 4 added together would be
, therefore one diagonal wold be
. and its side
. The area (of one square) is 
finally the two areas combined (squares 2 and 4) would be 225