What’s the question here?
Answer:
1.8 m/s
Explanation:
Draw a free body diagram of the block. There are four forces:
Normal force Fn up.
Weight force mg down.
Applied force F to the east.
Friction force Fn μ to the west.
Sum the forces in the y direction:
∑F = ma
Fn − mg = 0
Fn = mg
Sum the forces in the x direction:
F − Fn μ = ma
F − mg μ = ma
a = (F − mg μ) / m
a = (12 N − 6 kg × 9.8 m/s² × 0.15) / 6 kg
a = 0.53 m/s²
Given:
Δx = 3 m
v₀ = 0 m/s
a = 0.53 m/s²
Find: v
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (0.53 m/s²) (3 m)
v = 1.8 m/s
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
What is a travelling wave and a standing wave? What are the differences between both of them?
Answer: First of all we have to understand that a traveling wave is an organized disturbance traveling with a well defined wave speed. On the other hand standing waves are the combination of period waves with their reflected waves creating double sided waves. The differences between them is that standing waves have nodes and antinodes while a traveling wave does not.
I hope it helps, Regards.