The temperature of the air above it
Answer: 2.04 s
Explanation:
Let the initial velocity be v, Angle of projectile be
Then the horizontal component = v cos θ = 16 m/s
Vertical component of velocity = v sin θ = 20 m/s
Time taken to reach the highest point is half the time taken for total flight.
Time for total flight,


Thus, the football takes 2.04 s to rise to the highest point of its trajectory.
Answer:
1.63366
Explanation:
I got this answer from calculator soups physics calculators. I really recommend their website for formulas.
The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N