THE ANSWER IS B BECAUSE I TOOK THIS QUIZ ALREADY
<h3>
Answer: x(x+1)(5x+9) </h3>
===================================================
Work Shown:
5x^3 + 14x^2 + 9x
x( 5x^2 + 14x + 9 )
To factor 5x^2 + 14x + 9, we could use the AC method and guess and check our way to getting the correct result.
A better way in my opinion is to solve 5x^2 + 14x + 9 = 0 through the quadratic formula
![x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\x = \frac{-(14)\pm\sqrt{(14)^2-4(5)(9)}}{2(5)}\\\\x = \frac{-14\pm\sqrt{16}}{10}\\\\x = \frac{-14\pm4}{10}\\\\x = \frac{-14+4}{10} \ \text{ or } \ x = \frac{-14-4}{10}\\\\x = \frac{-10}{10} \ \text{ or } \ x = \frac{-18}{10}\\\\x = -1 \ \text{ or } \ x = \frac{-9}{5}\\\\](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-%2814%29%5Cpm%5Csqrt%7B%2814%29%5E2-4%285%29%289%29%7D%7D%7B2%285%29%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-14%5Cpm%5Csqrt%7B16%7D%7D%7B10%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-14%5Cpm4%7D%7B10%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-14%2B4%7D%7B10%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20%5Cfrac%7B-14-4%7D%7B10%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-10%7D%7B10%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20%5Cfrac%7B-18%7D%7B10%7D%5C%5C%5C%5Cx%20%3D%20-1%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20%5Cfrac%7B-9%7D%7B5%7D%5C%5C%5C%5C)
Then use those two solutions to find the factorization
x = -1 or x = -9/5
x+1 = 0 or 5x = -9
x+1 = 0 or 5x+9 = 0
(x+1)(5x+9) = 0
So we have shown that 5x^2 + 14x + 9 factors to (x+1)(5x+9)
-----------
Overall,
5x^3 + 14x^2 + 9x
factors to
x(x+1)(5x+9)
Answer:
The answer is x>3
Step-by-step explanation:
8x-6>6x
2x>6
x>3
hope this helps -Cam♡
Answer:
A) The height of the water increases 2 inches per minute.
Step-by-step explanation:
Slope is the rate of change of height
m = (16 - 12)/(4 - 2) = 4/2 = 2
2 inch per min
Positive slope implies increase
Exponential probability distribution f(r) = Ae-r/ λ λ where A = a constant, λ λ = mean free path 3. The attempt at a solution P = Integral (limits λ λ to ∞ ∞ )f(r) dr / Integral (limits 0 to ∞ ∞ ) f(r) dr