Uhh... is this the full problem because this looks like this is half a problem.
Answer:
<em>f(x) = 1/2x + 4</em>
Step-by-step explanation:
The rise of the function is 1 and the run is 2, so our slope is .5 or 1/2!
The function crosses the y-intercept at point (0,4) so our b value is positive 4!
9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
Answer:
The surface area is 10.26 feet.
Step-by-step explanation:
A=lw+l(w
2)2+h2+w(l
2)2+h2=0.8·0.8+0.8·(0.8
2)2+62+0.8·(0.8
2)2+62≈10.26131