Solution :
Given
Diameter of the roulette ball = 30 cm
The speed ball spun at the beginning = 150 rpm
The speed of the ball during a period of 5 seconds = 60 rpm
Therefore, change of speed in 5 seconds = 150 - 60
= 90 rpm
Therefore,
90 revolutions in 1 minute
or In 1 minute the ball revolves 90 times
i.e. 1 min = 90 rev
60 sec = 90 rev
1 sec = 90/ 60 rec
5 sec = 
= 75 rev
Therefore, the ball made 75 revolutions during the 5 seconds.
Answer:

Explanation:
Given data
time=0.530 h
Average velocity Vavg=19.0 km/s
To find
Displacement Δx
Solution
The Formula for average velocity is given as

Answer: 3.75 joules
Explanation:
Given that:
Mass of acorn = 0.300 kilograms
velocity = 5.oo m/s
Kinetic energy = ?
Since, kinetic energy is the energy possessed by a moving object, its value depends on the mass M and velocity V of the acorn.
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 0.300kg x (5.00m/s)^2
= 0.5 x 0.3kg x (5.00m/s)^2
= 0.15 x (5.00m/s)^2
= 3.75 joules
Thus, the kinetic energy of the falling acorn is 3.75 joules
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W
Answer:
true i think
Explanation:
The amplitude of a sound wave determines its loudness or volume. A larger amplitude means a louder sound, and a smaller amplitude means a softer sound. In Figure 10.2 sound C is louder than sound B. The vibration of a source sets the amplitude of a wave.