1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
10

ANSWER ASAP

Physics
2 answers:
Stella [2.4K]3 years ago
8 0
The weight of the plane is  (mass) x (acceleration of gravity).
Neither of these changes when the plane rises from the ground.
Its weight on the ground is equal to (the same as) its weight in the air.
Ira Lisetskai [31]3 years ago
5 0

Answer:

it stays the same at all times\\\\\\\

Explanation:

hope i helped

You might be interested in
A pendulum of length L=36.1 cm and mass m=168 g is released from rest when the cord makes an angle of 65.4 degrees with the vert
pychu [463]

(a) -0.211 m

At the beginning the mass is displaced such that the length of the pendulum is L = 36.1 cm and the angle with the vertical is

\theta=65.4^{\circ}

The projection of the length of the pendulum along the vertical direction is

L_y = L cos \theta = (36.1 cm)(cos 65.4^{\circ})=15.0 cm

the full length of the pendulum when the mass is at the lowest position is

L = 36.1 cm

So the y-displacement of the mass is

\Delta y = 15.0 cm - 36.1 cm = -21.1 cm = -0.211 m

(b) 0.347 J

The work done by gravity is equal to the decrease in gravitational potential energy of the mass, which is equal to

\Delta U = mg \Delta y

where we have

m = 168 g = 0.168 kg is the mass of the pendulum

g = 9.8 m/s^2 is the acceleration due to gravity

\Delta y = 0.211 m is the vertical displacement of the pendulum

So, the work done by gravity is

W=(0.168 kg)(9.8 m/s^2)(0.211 m)=0.347 J

And the sign is positive, since the force of gravity (downward) is in the same direction as the vertical displacement of the mass.

(c) Zero

The work done by a force is:

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

In this situation, the tension in the string always points in a radial direction (towards the pivot of the pendulum), while the displacement of the mass is tangential (it follows a circular trajectory): this means that the tension and the displacement are always perpendicular to each other, so in the formula

\theta=90^{\circ}, cos \theta = 0

and so the work done is zero.

5 0
3 years ago
The relationship that exists between gravity and distance and mass respectively.
ruslelena [56]

Answer:

D...............................

7 0
3 years ago
A 5 kg wooden block sitson a flat straight-away12 meters fromthe bottom of an infinitely long ramp, which has an angle of 20 deg
saveliy_v [14]

Answer:

(a) 19.71801m/s Velocity just before going up the ramp.

(b) 74.56338m.

Explanation:

We will solve it in two parts, first we will calculate time that 5kg wooden block would take to just reach ramp and with this time we will calculate final velocity that the wooden block would have in this time.

Second, we will calculate the component of velocity vector along inclined plane and the time that it would take for velocity to be 0 meters/s then with this time we will calculate the distance that inclined plane would travel along inclined plane.

Following formulas will be used.

                                  x(t) = \frac{1}{2} t^2 = 12m =16.2m/s^2 t^2

                                 F =ma

                                 V(t) = V_{o} +at

                                 x(t) = x_{0} +v_{0}t+\frac{1}{2}a t^2

(a) Calculating velocity right before going up the ramp.

 Wooden block is going on a straightaway and has net for on it.

         F_{n} =F-F_{s} = F-uF_{n}  = 100N-0.4*9.8m/s^2*5kg =81N

     and this force produces acceleration of

      a = \frac{F}{m}=\frac{81}{5} =16.2m/s^2 .

With this acceleration, wooden block would reach at the foot of ramp in.

          x(t) = 12m = 16.2m/s^2*t^2

         t = 1.217s

and final velocity will be

v(t) = v_{0}+at = 0+16.2m/s^2*1.2171s = 19.7180m/s.

this velocity of wooden box just before going up the ramp.

(b) How far up the ramp will the wooden block go before stopping.

Ramp is at 20° relative to horizontal therefore velocity along the ramp that the wooden block would have will be.

                              V= V_{h}cos(20) = 18.5288m/s

and deceleration along the ramp is

                              a = \frac{F_{s} }{m}

 Where F_{s} force of friction along the inclined plane.

F_s =  uF_n = u*m*a

a = 9.8m/s^2*cos(20) = 9.2089m/s^2

is a component of g along normal of the inclined plane.

                               F_{s} = 0.25*5kg*9.2089m/s^2

                              = 11.5112N

                              a = \frac{11.5112N}{5kg} = 2.3022m/s^2

And with this deceleration time needed to get wooded block to stop is.

                     v(t) = v_o-at = 18.5288m/s-2.3022m/s^2*t = 0

                        t = \frac{18.5288m/s}{2.3022m/s^2} =8.04813s

 and in that time wooden block would travel

   x(8.04813s) = 18.52881m/s *8.04813s-\frac{1}{} 2.3022m/s^2*(8.0481)^2=74.56338m

This is how up wooden box will go before coming to stop.

3 0
3 years ago
A real image can be obtained with:
In-s [12.5K]

Answer:

convex lens and a concave mirror

4 0
3 years ago
Read 2 more answers
The peak intensity of radiation from a star named sigma is 2 x 10^6 mmkay. What is the average surface temperature of Sigma roun
Igoryamba

Answer:

1.45 K

I had the same question and i got it right.

8 0
4 years ago
Read 2 more answers
Other questions:
  • `
    12·2 answers
  • The kinetic energy of a ball with a mass of 0.5 kg and a velocity of 10 m/s isJ.
    14·1 answer
  • Many Amtrak trains can travel at a top speed of 42.0 m/s. Assuming a train maintains that speed for several hours, how many kilo
    8·1 answer
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • What should you do after handling chemicals in the lab
    15·1 answer
  • A jet can travel at 400 minutes per second how far will it travel at this speed in 3 seconds​
    5·2 answers
  • Three collisions are elastic and three are inelastic. Determine which collision type took place for each collision. Support your
    6·1 answer
  • True or False. Only the initial ball carrier<br><br> can recover a fumble.
    8·2 answers
  • Please help ! Which of the following objects has the greatest momentum?
    12·1 answer
  • What two vertical forces act on a falling leaf?(1 point)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!