complex carbohydrates, such as starches and fiber, provide the body with long-lasting energy.
Hope this helps!
Answer:
a)
, b) 
Explanation:
a) The equation for vertical velocity is obtained by deriving the function with respect to time:

The velocities at given instants are, respectivelly:


Answer:
C. a disturbance that travels through a medium with a transfer of energy and without a transfer of matter
Explanation:
A wave is any disturbance that transfers energy from one location to the other via a substance called medium. It is important to note that a wave only conveys energy and not matter. For example, sound wave is a type of wave that carries sound energy from one place to another via mediums such as water, air etc.
Hence, according to this question, a wave can be described as a disturbance that travels through a medium with a transfer of energy and WITHOUT A TRANSFER OF MATTER.
We know the formulas for momentum and energy. But they both involve the mass of
the object, and we don't know the mass of the baseball. What can we do ?
It's not a catastrophe. The question only asks which one is bigger. If we're clever,
we can answer that without ever knowing how much the momentum or the energy
actually is. We know that both baseballs have the same mass, so let's just call it
' M ' and not worry about what it really is.
<u>Momentum of anything = (mass) x (speed)</u>
Momentum of the first baseball = (M) x (4 m/s) = 4M
Momentum of the second one = (M) x (16 m/s) = 16M
The second baseball has 4 times as much momentum as the first one has.
<u>Kinetic energy of anything = 1/2 (mass) x (speed squared)</u>
KE of the first baseball = 1/2 (M) x (4 squared) = 8M
KE of the second one = 1/2 (M) x (16 squared) = 128M
The second baseball has 16 times as much kinetic energy as the first one has.
The answer is C. F=ma basically says that force is a function of mass multiplied by acceleration. The first two answers don’t make sense because there’s no necessary relationship between mass and acceleration. And for the last two, the higher the mass, the higher the force needed, therefore C is the correct answer.