Consider the contrapositive of the statement you want to prove.
The contrapositive of the logical statement
<em>p</em> ⇒ <em>q</em>
is
¬<em>q</em> ⇒ ¬<em>p</em>
In this case, the contrapositive claims that
"If there are no scalars <em>α</em> and <em>β</em> such that <em>c</em> = <em>α</em><em>a</em> + <em>β</em><em>b</em>, then <em>a₁b₂</em> - <em>a₂b₁</em> = 0."
The first equation is captured by a system of linear equations,

or in matrix form,

If this system has no solution, then the coefficient matrix on the right side must be singular and its determinant would be

and this is what we wanted to prove. QED
Answer:
B. (3x - 12)° = (2x + 8)°
Step-by-step explanation:
This equation can be used to solve x.
3x - 12 = 2x + 8
3x - 2x = 12 + 8
x = 20°
-------------------------------------------------------------------
Verification:
3(20) - 12 = 2(20) + 8
60 - 12 = 40 + 8
48° = 48°
Answer:
3:15 cause a mirror cant change time
Step-by-step explanation:
go in ur mirror and look at the time did it somehow get darker or lighter???
For this case what you need to know is that the original volume of the cookie box is:
V = (w) * (l) * (h)
Where,
w: width
l: long
h: height.
We have then:
V = (w) * (l) * (h) = 48 in ^ 3
The volume of a similar box is:
V = (w * (2/3)) * (l * (2/3)) * (h * (2/3))
We rewrite:
V = ((w) * (l) * (h)) * ((2/3) * (2/3) * (2/3))
V = (w) * (l) * (h) * ((2/3) ^ 3)
V = 48 * ((2/3) ^ 3)
V = 14.22222222 in ^ 3
Answer:
the volume of a similar box that is smaller by a scale factor of 2/3 is:
V = 14.22222222 in ^ 3