1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
15

6u + 3u =18 simplify your answer as much as possible

Mathematics
1 answer:
tino4ka555 [31]3 years ago
4 0
6u + 3u = 18
9u = 18
u = 18/9
u = 2
You might be interested in
Let C(n, k) = the number of k-membered subsets of an n-membered set. Find (a) C(6, k) for k = 0,1,2,...,6 (b) C(7, k) for k = 0,
vladimir1956 [14]

Answer:

(a) C(6,0) = 1, C(6,1) = 6, C(6,2) = 15, C(6,3) = 20, C(6,4) = 15, C(6,5) = 6, C(6,6) = 1.

(b) C(7,0) = 1, C(7,1) = 7, C(7,2) = 21, C(7,3) = 35, C(7,4) = 35, C(7,5) = 21, C(7,6) = 7, C(7,7)=1.

Step-by-step explanation:

In this exercise we only need to recall the formula for C(n,k):

C(n,k) = \frac{n!}{k!(n-k)!}

where the symbol n! is the factorial and means

n! = 1\cdot 2\cdot 3\cdot 4\cdtos (n-1)\cdot n.

By convention 0!=1. The most important property of the factorial is n!=(n-1)!\cdot n, for example 3!=1*2*3=6.

(a) The explanations to the solutions is just the calculations.

  • C(6,0) = \frac{6!}{0!(6-0)!} = \frac{6!}{6!} = 1
  • C(6,1) = \frac{6!}{1!(6-1)!} = \frac{6!}{5!} = \frac{5!\cdot 6}{5!} = 6
  • C(6,2) = \frac{6!}{2!(6-2)!} = \frac{6!}{2\cdot 4!} = \frac{5!\cdot 6}{2\cdot 4!} = \frac{4!\cdot 5\cdot 6}{2\cdot 4!} = \frac{5\cdot 6}{2} = 15
  • C(6,3) = \frac{6!}{3!(6-3)!} = \frac{6!}{3!\cdot 3!} = \frac{5!\cdot 6}{6\cdot 6} = \frac{5!}{6} = \frac{120}{6} = 20
  • C(6,4) = \frac{6!}{4!(6-4)!} = \frac{6!}{4!\cdot 2!} = frac{5!\cdot 6}{2\cdot 4!} = \frac{4!\cdot 5\cdot 6}{2\cdot 4!} = \frac{5\cdot 6}{2} = 15
  • C(6,5) = \frac{6!}{5!(6-5)!} = \frac{6!}{5!} = \frac{5!\cdot 6}{5!} = 6
  • C(6,6) = \frac{6!}{6!(6-6)!} = \frac{6!}{6!} = 1.

(b) The explanations to the solutions is just the calculations.

  • C(7,0) = \frac{7!}{0!(7-0)!} = \frac{7!}{7!} = 1
  • C(7,1) = \frac{7!}{1!(7-1)!} = \frac{7!}{6!} = \frac{6!\cdot 7}{6!} = 7
  • C(7,2) = \frac{7!}{2!(7-2)!} = \frac{7!}{2\cdot 5!} = \frac{6!\cdot 7}{2\cdot 5!} = \frac{5!\cdot 6\cdot 7}{2\cdot 5!} = \frac{6\cdot 7}{2} = 21
  • C(7,3) = \frac{7!}{3!(7-3)!} = \frac{7!}{3!\cdot 4!} = \frac{6!\cdot 7}{6\cdot 4!} = \frac{5!\cdot 6\cdot 7}{6\cdot 4!} = \frac{120\cdot 7}{24} = 35
  • C(7,4) = \frac{7!}{4!(7-4)!} = \frac{6!\cdot 7}{4!\cdot 3!} = frac{5!\cdot 6\cdot 7}{4!\cdot 6} = \frac{120\cdot 7}{24} = 35
  • C(7,5) = \frac{7!}{5!(7-2)!} = \frac{7!}{5!\cdot 2!} = 21
  • C(7,6) = \frac{7!}{6!(7-6)!} = \frac{7!}{6!} = \frac{6!\cdot 7}{6!} = 7
  • C(7,7) = \frac{7!}{7!(7-7)!} = \frac{7!}{7!} = 1

For all the calculations just recall that 4! =24 and 5!=120.

6 0
3 years ago
Is 19 equal to 4.358
AURORKA [14]

Answer:

No

Step-by-step explanation:

19=19 and 4.358=4.358

7 0
2 years ago
Find the quotient.<br><br> 85,544 ÷ 289
finlep [7]
It is 296 that will the the right answer
7 0
3 years ago
After a 15% increase, a town has 115 people. What was the population before the increase?
Arte-miy333 [17]

Answer:

100 people

Step-by-step explanation:

<em>Population</em><em> </em><em>Of</em><em> </em><em>People</em><em>=</em><em>1</em><em>1</em><em>5</em><em>Percentage</em><em>ncrease</em><em>=</em><em>1</em><em>5</em><em>%</em>

<em>The</em><em> </em><em>New</em><em> </em><em>Population </em><em>corresponds </em><em>to</em><em> </em><em>1</em><em>1</em><em>5</em><em>%</em>

<em>(</em><em>That</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>+</em><em>1</em><em>5</em><em>)</em>

<em>We</em><em> </em><em>want</em><em> </em><em>to </em><em>find</em><em> </em><em>the</em><em> </em><em>popula</em><em>tion</em><em> </em><em>that</em><em> </em><em>corresponds</em><em> </em><em>to </em><em>100%</em><em> </em><em>that </em><em>is </em><em>the</em><em> </em><em>original</em><em> </em><em>population</em><em>.</em>

<em>Therefore</em><em> </em><em>Original </em><em>Population</em><em>;</em>

<em>\frac{100}{115}\times {115}{}</em>

<em>100 \: people</em>

7 0
3 years ago
Ms. Wittenberg had a total of $220. She spent $11 at Dunkin' Donuts.
Sphinxa [80]
She spent 5% of her money
8 0
3 years ago
Other questions:
  • In the morning, Marco sold 12 cups of lemonade for $3. By the end of the day, he had earned $9. How many cups of lemonade did he
    5·2 answers
  • What is the best order-of-magnitude estimate for 58,100?
    8·1 answer
  • How many terms are in the arithmetic sequence 9, 2, −5, . . . , −187?
    13·1 answer
  • Evaluate 5+x-5*8 for x = 7
    7·1 answer
  • HELP PLEASE BE QUICK
    8·2 answers
  • Given: A(0,0) B(0,3) C(4,0) D(0,6) and E(8,0)<br> Prove:ABC~ADE
    9·1 answer
  • Margaret drank 1/6 of a 36oz. bottle of soda. She gives the
    5·1 answer
  • Udent/twewxxrhs
    10·1 answer
  • Standard form of -43/63 is​
    10·1 answer
  • What is the domain of f(x)=(1/4)^x?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!