Answer:
<em>You would need 10 yards of fabric</em>
Step-by-step explanation:
Answer:
There is a 34.13% probability that the actual return will be between the mean and one standard deviation above the mean.
Step-by-step explanation:
This is problem is solving using the Z-score table.
The Z-score of a measure measures how many standard deviations above/below the mean is a measure. Each Z-score has a pvalue, that represents the percentile of a measure.
What is the probability that the actual return will be between the mean and one standard deviation above the mean?
One measure above the mean is 
The mean is 
This means that this probability is the pvalue of
subtracted by the pvalue of
.
has a pvalue of 0.8413.
has a pvalue of 0.50.
This means that there is a 0.8413-0.50 = 0.3413 = 34.13% probability that the actual return will be between the mean and one standard deviation above the mean.
Answer:
Step-by-step explanation:
to be honest I'm not sure how
Answer:
C. 
General Formulas and Concepts:
<u>Calculus</u>
- Mean Value Theorem (MVT) - If f is continuous on interval [a, b], then there is a c∈[a, b] such that

- MVT is also Average Value
Step-by-step explanation:
<u>Step 1: Define</u>

f'(c) = 20
Interval [1, b]
<u>Step 2: Check/Identify</u>
Function [1, b] is continuous.
Derivative [1, b] is continuous.
∴ There exists a c∈[1, b] such that 
<u>Step 3: Mean Value Theorem</u>
- Substitute:

- Rewrite:

And we have our final answer!