Answer:
The height of the objects are the same after 2 seconds.
Step-by-step explanation:
In order to calculate at which time both objects have the same height we need to find the value of t that makes both equations equal. Therefore:
![-t^2 + 3t = -t + 4\\t^2 - 3t - t + 4 = 0\\t^2 - 4t + 4 = 0\\t_{1,2} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4*1*4}}{2*1} = \frac{4 \pm \sqrt{16 - 16}}{2}\\t_{1,2} = \frac{4}{2} = 2](https://tex.z-dn.net/?f=-t%5E2%20%2B%203t%20%3D%20-t%20%2B%204%5C%5Ct%5E2%20-%203t%20-%20t%20%2B%204%20%3D%200%5C%5Ct%5E2%20-%204t%20%2B%204%20%3D%200%5C%5Ct_%7B1%2C2%7D%20%3D%20%5Cfrac%7B-%28-4%29%20%5Cpm%20%5Csqrt%7B%28-4%29%5E2%20-%204%2A1%2A4%7D%7D%7B2%2A1%7D%20%3D%20%5Cfrac%7B4%20%5Cpm%20%5Csqrt%7B16%20-%2016%7D%7D%7B2%7D%5C%5Ct_%7B1%2C2%7D%20%3D%20%5Cfrac%7B4%7D%7B2%7D%20%3D%202)
The height of the objects are the same after 2 seconds.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
![slope = \frac{ - 2 - 3}{6 - 7} \\](https://tex.z-dn.net/?f=slope%20%3D%20%20%5Cfrac%7B%20-%202%20-%203%7D%7B6%20-%207%7D%20%20%5C%5C%20)
![slope = \frac{ - 5}{ - 1} \\](https://tex.z-dn.net/?f=slope%20%3D%20%20%5Cfrac%7B%20-%205%7D%7B%20-%201%7D%20%20%5C%5C%20)
![slope = 5](https://tex.z-dn.net/?f=slope%20%3D%205)
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
The question was posted incomplete.
This is the part missing:
<span>What is the height of the plane to the nearest meter?
Answer: 559 m.
Explanation:
1) The horizontal distance between the plane and tha atoll makes a right triangle with the height, with the depression angle between the two legs.
2) Therefore, you can use the tangent trigonometric ratio:
tan(10°) = opposite-leg / adyacent-leg = height / horizontal distance
⇒ height = horizontal distance × tan (10°)
⇒ height = 3,172 m × tan(10°) = 559.31 m, which rounded to the nearest m is 559
</span>
Answer:
A multiply by 5
Step-by-step explanation:
x/5-12=10
x/5=10+12
x/5=22
multiple each side by 5
x=22*5
Answer:
a . 34
b. 150
Step-by-step explanation:
in the second case firstly add the number in bracket and multiply both the number given
in 1st case first multiply
then add both the product