Answer:
25306
Step-by-step explanation:
a=starting value = 20000
r=\text{rate = }4\% = 0.04
r=rate = 4%=0.04
\text{Exponential Growth:}
Exponential Growth:
b=1+r=1+0.04=1.04
b=1+r=1+0.04=1.04
\text{Write Exponential Function:}
Write Exponential Function:
y=20000(1.04)^x
y=20000(1.04)  
x
  
Put it all together
\text{Plug in time for x:}
Plug in time for x:
y=20000(1.04)^{6}
y=20000(1.04)  
6
  
y= 25306.38037
y=25306.38037
 
        
             
        
        
        
So Roger flight left at exactly 9.27:am and it will land at 1:05pm
So count on to 12:27 will be 3 hours and subtract from 5 because 65 is 05 3hours and 38mins
        
                    
             
        
        
        
Let us model this problem with a polynomial function.
Let x =  day number (1,2,3,4, ...)
Let y = number of creatures colled on day x.
Because we have 5 data points, we shall use a 4th order polynomial of the form
y = a₁x⁴ + a₂x³ + a₃x² + a₄x + a₅
Substitute x=1,2, ..., 5 into y(x) to obtain the matrix equation
|   1     1    1    1    1  |  | a₁ |      | 42 |
| 2⁴  2³  2²  2¹  2⁰  |  | a₂ |      | 26 |
| 3⁴  3³  3²  3¹  3⁰   |  | a₃ |  =  | 61 |
| 4⁴  4³  4²  4¹  4⁰   |  | a₄ |      | 65 |
| 5⁴  5³  5²  5¹  5⁰  |  | a₅ |      | 56 |
When this matrix equation is solved in the calculator, we obtain
a₁ =      4.1667
a₂ =  -55.3333
a₃ =  253.3333
a₄ =  -451.1667
a₅ =   291.0000
Test the solution.
y(1) = 42  
y(2) = 26
y(3) = 61
y(4) = 65
y(5) = 56
The average for 5 days is (42+26+61+65+56)/5 = 50.
If Kathy collected 53 creatures instead of 56 on day 5, the average becomes
(42+26+61+65+53)/5 = 49.4.
Now predict values for days 5,7,8.
y(6) = 152
y(7) = 571
y(8) = 1631
        
                    
             
        
        
        
Answer:
PUPPY DOGGIE
Step-by-step explanation:
REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE