<h2>9.</h2><h3>Given</h3>
<h3>Find</h3>
- linear approximation to the volume when the radius increases 0.4 cm
<h3>Solution</h3>
The equation for volume of a sphere is
... V = (4/3)π·r³
Differentiating gives
... dV = 4π·r²·dr
Filling in the given numbers gives
... change in volume ≈ 4π·(15 cm)²·(0.4 cm)
... = 360π cm³ ≈ 1130.97 cm³ . . . . . . volume of layer 4mm thick
<h2>11.</h2><h3>Given</h3>
- an x by x by 2x cuboid with surface area 129.6 cm²
- rate of change of x is 0.01 cm/s
<h3>Find</h3>
<h3>Solution</h3>
The area is that of two cubes of dimension x joined together. The area of each such cube is 6x², but the two joined faces don't count in the external surface area. Thus the area of the cuboid is 10x².
The volume of the cuboid is that of two cubes joined, so is 2x³. Then the rate of change of volume is
... dV/dt = (d/dt)(2x³) = 6x²·dx/dt
We know x² = A/10, where A is the area of the cuboid, so the rate of change of volume is ...
... dV/dt = (6/10)A·dx/dt = 0.6·(129.6 cm²)(0.01 cm/s)
... dV/dt = 0.7776 cm³/s
It is prime because nothing equals it other than 5x1
Answer:

Step-by-step explanation:
To evaluate or simplify expressions with exponents, we use exponent rules.
1. An exponent is only a short cut for multiplication. It simplifies how we write the expression.
2. When we multiply terms with the same bases, we add exponents.
3. When we divide terms with the same bases, we subtract exponents.
4. When we have a base to the exponent of 0, it is 1.
5. A negative exponent creates a fraction.
6. When we raise an exponent to an exponent, we multiply exponents.
7. When we have exponents with parenthesis, we apply it to everything in the parenthesis.
We will use these rules 2 and 7 to simplify. First apply the 4 exponent to both -6 and p. Then add the exponent of the base -6 and p on the outside of the parenthesis.
