1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
11

Miraculin - a protein naturally produced in a rare tropical fruit - can convert a sour taste into a sweet taste. Consequently, m

iraculin has the potential to be an alternative low-calorie sweetener. In Plant Science (May 2010), a group of Japanese environmental scientists investigated the ability of a hybrid tomato plant to produce miraculin. For a particular generation of the tomato plant, the amount x of miraculin produced (measured in micrograms per gram of fresh weight) had a mean of 105.3 and a standard deviation of 8.0. Assume that x is normally distributed. a. Find P(x > 120). b. Find P(100 < x < 110). c. Find the value a for which P(x < a) = .25 .
Mathematics
1 answer:
sineoko [7]3 years ago
8 0

Answer:

a) P(x > 120) = 0.74537

b) P(100 < x < 110) = 0.46777

c) Value of a = 110.7

Step-by-step explanation:

Let x = amount of miraculin produced (measured in micro grams per gram of fresh weight)

We are given <em>Mean, </em>\mu<em> = 105.3  and  Standard Deviation, </em>\sigma<em> = 8.0</em>

Also, since x is normally distributed so;

                    Z = \frac{x - \mu}{\sigma} follows N(0,1)

a) P(x > 100) = P( \frac{x - \mu}{\sigma} > \frac{100 - 105.3}{8.0} ) = P(Z > -0.6625) = P(Z < 0.66) = 0.74537

b) P(100 < x < 110) = P(x < 110) - P(x <= 100)

     P(x <= 100) = 1 - P(x > 100) = 1 - 0.74537 = 0.25463

     P(x < 110) = P( \frac{x - \mu}{\sigma} < \frac{110 - 105.3}{8.0} ) = P(Z < 0.59) = 0.72240

Hence, <em>P(100 < x < 110) = 0.72240 - 0.25463 = 0.46777</em>

c) Given expression is P(x < a ) = 0.25

                       ⇒ P( \frac{x - \mu}{\sigma} < \frac{a - 105.3}{8.0} ) = 0.25

                       ⇒ P(Z < \frac{a - 105.3}{8.0} ) = 0.25

By seeing the Z % table we find that the value of z which have an are of 25% is 0.6745 i.e.

                     \frac{a - 105.3}{8.0} = 0.6745

So, value of a = 0.6745*8 + 105.3 = 110.7 .        

You might be interested in
Maurice and Johanna have appreciated the help you have provided them and their company Pythgo-grass. They have decided to let yo
Colt1911 [192]
<span><span>1.A triangular section of a lawn will be converted to river rock instead of grass. Maurice insists that the only way to find a missing side length is to use the Law of Cosines. Johanna exclaims that only the Law of Sines will be useful. Describe a scenario where Maurice is correct, a scenario where Johanna is correct, and a scenario where both laws are able to be used. Use complete sentences and example measurements when necessary.
</span>
The Law of Cosines is always preferable when there's a choice.  There will be two triangle angles (between 0 and 180 degrees) that share the same sine (supplementary angles) but the value of the cosine uniquely determines a triangle angle.

To find a missing side, we use the Law of Cosines when we know two sides and their included angle.   We use the Law of Sines when we know another side and all the triangle angles.  (We only need to know two of three to know all three, because they add to 180.  There are only two degrees of freedom, to answer a different question I just did.

<span>2.An archway will be constructed over a walkway. A piece of wood will need to be curved to match a parabola. Explain to Maurice how to find the equation of the parabola given the focal point and the directrix.
</span>
We'll use the standard parabola, oriented in the usual way.  In that case the directrix is a line y=k and the focus is a point (p,q).

The points (x,y) on the parabola are equidistant from the line to the point.  Since the distances are equal so are the squared distances.

The squared distance from (x,y) to the line y=k is </span>(y-k)^2
<span>
The squared distance from (x,y) to (p,q) is </span>(x-p)^2+(y-q)^2.<span>
These are equal in a parabola:

</span>
(y-k)^2 =(x-p)^2+(y-q)^2<span>

</span>y^2-2ky + k^2 =(x-p)^2+y^2-2qy + q^2

y^2-2ky + k^2 =(x-p)^2 + y^2 - 2qy+ q^2

2(q-k)y =(x-p)^2+ q^2-k^2

y = \dfrac{1}{2(q-k)} ( (x-p)^2+ q^2-k^2)

Gotta go; more later if I can.

<span>3.There are two fruit trees located at (3,0) and (−3, 0) in the backyard plan. Maurice wants to use these two fruit trees as the focal points for an elliptical flowerbed. Johanna wants to use these two fruit trees as the focal points for some hyperbolic flowerbeds. Create the location of two vertices on the y-axis. Show your work creating the equations for both the horizontal ellipse and the horizontal hyperbola. Include the graph of both equations and the focal points on the same coordinate plane.

4.A pipe needs to run from a water main, tangent to a circular fish pond. On a coordinate plane, construct the circular fishpond, the point to represent the location of the water main connection, and all other pieces needed to construct the tangent pipe. Submit your graph. You may do this by hand, using a compass and straight edge, or by using a graphing software program.

5.Two pillars have been delivered for the support of a shade structure in the backyard. They are both ten feet tall and the cross-sections​ of each pillar have the same area. Explain how you know these pillars have the same volume without knowing whether the pillars are the same shape.</span>
5 0
3 years ago
A runner can travel 100 meters in 20 seconds. At that rate, how far does the runner go in 1 minute?
dimaraw [331]

Answer:

he can run 5 meters in 1 min

Step-by-step explanation:

S = d/t

S=100m/20s

S=5m/s

8 0
3 years ago
What is the equation of the line whose graph is parallel to the graph of y=3x-10
TEA [102]
Hello,

y=3x+b is parallele to y=3x-10
In order to determine b, we must know something else.

3 0
3 years ago
What are the zeros of the polynomial function y=2x^3-7x^2+2x+3?
zlopas [31]

y = 2 {x}^{3}  - 7 {x}^{2}  + 2x + 3

By inspection 1 is a root of y ,
Hence , (x-1) is a factor of y ,

\dfrac{2 {x}^{3} - 7 {x}^{2}  + 2x + 3 }{x - 1}  = 2 {x}^{2}  - 5x - 3 \\  \\ 2 {x}^{2}  - 5x - 3 = (2x + 1)(x - 3)

Hence , the 2 other roots are -1/2 and 3 , and the above graphs confirms the same.

Hope it helps you :)

7 0
3 years ago
Please answer this and I’ll make ya
Fynjy0 [20]
It’s definitely A
Ex: f(x)=8x+2
f(x)=8(-4)+2
f(x)=-32+2
f(x)=-30
3 0
3 years ago
Other questions:
  • What is the volume of the figure?
    14·1 answer
  • Simplify x^2+x-12/x^2+3x-4
    10·1 answer
  • I am swiss cheese and you cannot stop me &gt;:)
    9·1 answer
  • Which type of transformation is described (x,y) (x+2, y+3)
    15·1 answer
  • 3 × 5/8 + 3,200 ÷ 3?
    9·1 answer
  • (-4+6i) + (-6-2i)<br> How do I solve
    11·2 answers
  • You have just bought a new television and it has an aspect ratio of 16:9. The screen on the television is 65 inches. What is the
    7·2 answers
  • 94 1/4 divided by 7 1/4
    6·2 answers
  • Rewrite the expression without parentheses. 15m − ( 3 + 5m )
    5·1 answer
  • 4
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!