Answer:
Since HCl is a strong acid, it completely ionizes, and the pH of HCl in solution can be found from the concentration (molarity) of the H+ ions, by definition equal to 0.100 M. (The conjugate base of the acid, which is the chloride ion Cl–, would also have a concentration of 0.100 M.) The pH is thus –log(0.100) = 1.000.
Explanation:
Answer:
2.25g of NaF are needed to prepare the buffer of pH = 3.2
Explanation:
The mixture of a weak acid (HF) with its conjugate base (NaF), produce a buffer. To find the pH of a buffer we must use H-H equation:
pH = pKa + log [A-] / [HA]
<em>Where pH is the pH of the buffer that you want = 3.2, pKa is the pKa of HF = 3.17, and [] could be taken as the moles of A-, the conjugate base (NaF) and the weak acid, HA, (HF). </em>
The moles of HF are:
500mL = 0.500L * (0.100mol/L) = 0.0500 moles HF
Replacing:
3.2 = 3.17 + log [A-] / [0.0500moles]
0.03 = log [A-] / [0.0500moles]
1.017152 = [A-] / [0.0500moles]
[A-] = 0.0500mol * 1.017152
[A-] = 0.0536 moles NaF
The mass could be obtained using the molar mass of NaF (41.99g/mol):
0.0536 moles NaF * (41.99g/mol) =
<h3>2.25g of NaF are needed to prepare the buffer of pH = 3.2</h3>
Answer:
The answer to your question is: letter D.
Explanation:
Noble gases are located in group VIIIA of the periodic table, this means that they have 8 eight electrons in their outermost shell.
Due to this characteristic, they are stable and do not react with other elements.
a. 1s22s22p4 The outermost shell of this electron configuration has 6 electrons, then this element has 6 electrons not 8. This configuration is of an element of the group VIA.
b. [Ne]2s22p2 The outermost shell of this element has 4 electrons, so this is not the configuration of a noble gas.
c. [Ar] 3s1 This element only has one electron in its outermost shell, so this is the electron configuration of an alkaline metal.
d. 1s22s22p6 This element has 8 electrons in its outermost shell, so this is the electron configuration of a noble gas.
Explanation:
The Lewis dot diagram shows how electrons participate in a bond with Carbon and Chlorine. This is shown by the sticks and the 2 paired electrons near the carbon atom which represent the bonds. These electrons form these bonds because they form octets when they are bonded which most molecules and compounds follow
Hoped this helped, 2Trash4U
Answer:
Succinic acid
Explanation:
The most common possibility is succinic acid
As it has decimals after whole no till hundredth it contains OH and C in most of the cases .
Let's check for succinic acid
- C4H_6O_6
- 4(12)+4(16)+6
- 64+48+6
- 118u
Yes approximately equal
Molecular formula is.
(CH_2)_2(CO_2H)_2