Answer:
H2O2
Explanation:
it is made up of Oxygen and Hydrogen. Unlike water which is H2O Hydrogen peroxide is made up of 2 oxygen atoms
Answer:
the concentration in moles per litre of is
Explanation:
Molarity
mark me as a a brainlist answer
Answer:
a)The mass percentages of nitrogen and phosphorus in the compound is 24.34% and 26.95% respectively.
b) 14.78 grams ammonia is incorporated into 100. g of compound.
Explanation:
a) Ammonium dihydrogen phosphate that is
.
Molecular mass of ammonium dihydrogen phosphate = M
M = 115 g/mol
Percentage of an element in a compound:

Percentage of nitrogen:

Percentage of phosphorus:

b) Percentage of ammonia in 1 molecule of ammonium dihydrogen phosphate.
Molar mass of ammonia = 17 g/mol

Amount of ammonia in 100 grams of compound:
14.78% of 100 g of ammonium dihydrogen phosphate:

14.78 grams ammonia is incorporated into 100. g of compound.
Answer:
have the same number of atoms of each element in the reactants and in the products
Explanation:
<em>The basic principle in balancing a chemical equation would simply be to have the same number of atoms of each element in the reactants and in the products.</em>
<u>A balanced chemical equation is one that has the same number of atoms of each element on the reactant and the product's side of the equation.</u> For example, consider the equation below:

On the reactant's side, there are 2 atoms of H and O while there are 2 atoms of H and 1 atom of O on the product's side. This is an imbalanced equation. In order for it to be balanced, the number of atoms of H and O on the reactant side must be equal to the number of H and O on the product side as below.

Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL