Cl is highly electronegative and will actually pull away 1 electron from sodium, forming an ionic bond.
CuCl2+F2—>CuF2+Cl2.
This is a single replacement because there is one compound and one element. Picture Cu as ‘A’ Cl2 as ‘B’ and F2 as ‘C.’ So AB+C—>AC+B. A and B “broke up” and that resulted to A going with C to create the compound CuF2 leaving Cl2 alone.
Thyroid hormone contains the mineral iodine (option I). Details about thyroid hormone can be found below.
<h3>What is the thyroid hormone?</h3>
Thyroid hormone is the hormone produced by the thyroid gland of the body, which is a large butterfly-shaped endocrine gland situated on the front of the neck that produces various hormones.
The thyroid hormone is responsible for regulating metabolism, which controls the amount of calories burnt in a day.
One of the major minerals found in the thyroid is iodine. The thyroid gland absorbs iodine from the bloodstream, and then stores it to aid in the production of thyroid hormones.
Therefore, the thyroid hormone contains the mineral iodine.
Learn more about thyroid at: brainly.com/question/13856314
#SPJ1
Answer : The metal used was iron (the specific heat capacity is
).
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of unknown metal = ?
= specific heat of water = 
= mass of unknown metal = 150 g
= mass of water = 200 g
= final temperature of water = 
= initial temperature of unknown metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Form the value of specific heat of unknown metal, we conclude that the metal used in this was iron (Fe).
Therefore, the metal used was iron (the specific heat capacity is
).
Answer:
The final temperature of the solution is 44.8 °C
Explanation:
assuming no heat loss to the surroundings, all the heat of solution (due to the dissolving process) is absorbed by the same solution and therefore:
Q dis + Q sol = 0
Using tables , can be found that the heat of solution of CaCl2 at 25°C (≈24.7 °C) is q dis= -83.3 KJ/mol . And the molecular weight is
M = 1*40 g/mol + 2* 35.45 g/mol = 110.9 g/mol
Q dis = q dis * n = q dis * m/M = -83.3 KJ/mol * 13.1 g/110.9 gr/mol = -9.84 KJ
Qdis= -9.84 KJ
Also Qsol = ms * Cs * (T - Ti)
therefore
ms * Cs * (T - Ti) + Qdis = 0
T= Ti - Qdis * (ms * Cs )^-1 =24.7 °C - (-9.84 KJ/mol)/[(104 g + 13.1 g)* 4.18 J/g°C] *1000 J/KJ
T= 44.8 °C