Total number of members = 12
Members to choose at a time = 2
This is a combination problem and we are to find the combination of 12 objects taken 2 at a time i.e. we are to find 12C2
12C2 = 66
So, there are 66 ways of selecting a president and vice president.
Therefore, the correct answer is option D
Answer:
4
Step-by-step explanation:
If Judge is x years old and Eden is 6 years older, then Eden is x + 6 years old.
The second part tells us that Eden will be twice as old as Judge in two years.
This means that in two years: (Eden's age) = 2 * (Judge's age).
Since we know that Eden's age can be represented as x + 6 and Judge's age can be represented as x, we can write this: x + 6 = 2 * x
Simplify the equation:
x + 6 = 2x
6 = x = Judge's age (in two years)
If Judge is 6 two years later, then he must be 4 now.
To check our work, we can just look at the problem. Judge is 4 years old and Eden is 6 years older than Judge (that means Eden is 10 right now). Two years later, Eden is 12 and Judge is 6, so Eden is twice as old as Judge. The answer is correct.
9514 1404 393
Answer:
A. 3×3
B. [0, 1, 5]
C. (rows, columns) = (# equations, # variables) for matrix A; vector x remains unchanged; vector b has a row for each equation.
Step-by-step explanation:
A. The matrix A has a row for each equation and a column for each variable. The entries in each column of a given row are the coefficients of the corresponding variable in the equation the row represents. If the variable is missing, its coefficient is zero.
This system of equations has 3 equations in 3 variables, so matrix A has dimensions ...
A dimensions = (rows, columns) = (# equations, # variables) = (3, 3)
Matrix A is 3×3.
__
B. The second row of A represents the second equation:

The coefficients of the variables are 0, 1, 5. These are the entries in row 2 of matrix A.
__
C. As stated in part A, the size of matrix A will match the number of equations and variables in the system. If the number of variables remains the same, the number of rows of A (and b) will reflect the number of equations. (The number of columns of A (and rows of x) will reflect the number of variables.)