1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
10

Help!![tex]Janet is buying a $28 necklace. The store reduces the price by 20% and then applies a $2 off coupon. How much will sh

e pay for the necklace?
Mathematics
2 answers:
Nataliya [291]3 years ago
6 0
$20.40

Hope this helps! ^_^
aleksandr82 [10.1K]3 years ago
6 0
10% of 28 is 2.8. 2.8x2 is 5.6. 5.6-28=22.4. 22.4-2= 20.4
You might be interested in
SOMEONE PLEASE HELP!!
Harrizon [31]
Answer
i believe the answer would be b


hope this helps and have a wonderful day :)
3 0
3 years ago
Read 2 more answers
Lindsay and Menon have 1240 stickers.Menon has 4 times as many stickers as Lindsay.How many stickers does Menon have.
Nezavi [6.7K]
I do believethe answer would  e 4960 stickers is what Menon would have.
8 0
3 years ago
Read 2 more answers
Assume a warehouse operates 24 hours a day. Truck arrivals follow Poisson distribution with a mean rate of 36 per day and servic
kirill [66]

The expected waiting time in system for typical truck is 2 hours.

Step-by-step explanation:

Data Given are as follows.

Truck arrival rate is given by,   α  = 36 / day

Truck operation departure rate is given,   β= 48 / day

A constructed queuing model is such that so that queue lengths and waiting time can be predicted.

In queuing theory, we have to achieve economic balance between number of customers arriving into system and that of leaving the system whether referring to people or things, in correlating such variables as how customers arrive, how service meets their requirements, average service time and extent of variations, and idle time.

This problem is solved by using concept of Single Channel Arrival with exponential service infinite populate model.

Waiting time in system is given by,

w_{s} = \frac{1}{\alpha - \beta  }

        where w_s is waiting time in system

                   \alpha is arrival rate described Poission distribution

                   \beta is service rate described by Exponential distribution

w_{s} = \frac{1}{\alpha - \beta  }

w_{s} = \frac{1}{48 - 36 }

w_{s} = \frac{1}{12 } day

w_{s} = \frac{1}{12 }  \times 24  hour        ...it is due to 1 day = 24 hours

w_{s} = 2 hours

Therefore, time required for waiting in system is 2 hours.

           

                   

5 0
3 years ago
In a recent class vote, 39% of the students voted to have online assignments. What is 39% written as a decimal?
serg [7]

Answer:

0.39

Step-by-step explanation:

39/100=0.39

%=100

6 0
3 years ago
Which of the following definitions is the best way to describe popular culture?
marin [14]

Answer:

A-cultural patterns that can change quickly and are accepted by the majority of people.

4 0
3 years ago
Other questions:
  • Can someone please help me on this question
    5·1 answer
  • Add the two expressions. <br> −6m+10 and 9m−9 <br> Enter your answer in the box.
    6·1 answer
  • Pythagorean theorem:
    13·2 answers
  • Consider a circle whose size can vary. Let r represent the radius of the circle (in cm) and let C represent the circumference of
    6·1 answer
  • Name any outliers in the data 277,448,279,334,132,599,237,251,183, and 191
    14·1 answer
  • SERIOUSLY GUYS HELP!!!!!!
    6·2 answers
  • Nd Practice
    6·1 answer
  • The number of employees at a certain company is 1440 and is increasing at a rate of 1.5% per year. Write an exponential growth f
    11·1 answer
  • X squared over 5 gives you what?
    9·1 answer
  • A one-year membership to metro gym cost $460.There is a fee of $40 when you join and the rest is paid monthly.Write an equation
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!