<span>This question, in my opinion, is not well stated. If f(x) = √x, as the question statement seems to say, then the domain is not x<7. Rather, the domain is x≥0.
If f(x) is not the square root function, but say f(x) = √(7-x) then the domain is x≤7, and for this function then the appropriate answer is d), since the x-term inside the radical has a negative coefficient.</span>
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
The second equation is <span>-5-2y=2, then
</span>
<span>-2y=2-(-5),
</span>
-2y=2+5,
-2y=7,
y=7÷(-2),
y=-3.5.
The first equation is 2x+5y=16, subtitude y=-3.5 in this equation, then
2x+5·(-3.5)=16,
2x-17.5=16,
2x=16-(-17.5),
2x=16+17.5,
2x=33.5,
x=33.5÷2,
x=16.75.
Answer: (16.75,-3.5)
To find the perimeter you do length + width so you do 12.4 + 5.9 to get the perimeter.
Answer:
3/12
Step-by-step explanation:
OR:
14 is equivalent to 3/12 because 1 x 12 is the same as 4 x 3. They both equal 12. 28 is equivalent to 3/12 because 2 x 12 is the same as 8 x 3. They both equal 24.