Answer:
a) 9
Step-by-step explanation:
f(2) basically equals to y when x=2 and the y coordinate at x=2 is 9
The volume of a cuboid is given by length × width × height
We have:
Volume = 7.6 ft³
Height = 3x - 1
Length = x + 5
Width = x
Substituting these into the formula, we have:
7.6 = (3x - 1) (x + 5) (x)
7.6 = [3x² + 15x - x - 5] (x)
7.6 = [3x² + 14x - 5](x)
7.6 = 3x³ + 14x² - 5x
0 = 3x³ + 14x² - 5x - 7.6
Drawing the graph is one way of finding the solution (refer to the graph below):
We have three solutions (where the curve crosses the x-axis):
x = -4.9
x = -0.6
x = 0.8
Putting these solutions back into the context, since we are looking for the value of x which is part of measurement of length, we cannot have negative value, so we will take the value of x = 0.8 ft
Converting 0.8 ft into inches = 0.8 × 12 inches = 9.6 inches
Answer: x = 9.6 inches
Answer:
Compound interest is calculated by multiplying the initial principal amount by one plus the annual interest rate raised to the number of compound periods minus one.
Step-by-step explanation:
Answer:
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Step-by-step explanation:
Recall that a penny is a money unit. It is created/produced, just like any other commodity. As a matter of fact, almost all types of money or currency are manufactured; with different materials ranging from paper to solid metals.
A group of pennies made in a certain year are weighed. The variable of interest here is weight of a penny.
The mean weight of all selected pennies is approximately 2.5grams.
The standard deviation of this mean value is 0.02grams.
In this context,
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Likewise, adding 0.02g to the mean, you get the highest penny weight in the group.
Hence, the weight of each penny in this study, falls within
[2.48grams - 2.52grams]
8/4=12/x
Would be the ratio.
Solve it:
8/4 =12/x
2=12/x
2x=12
X=6