Volume of cone formula: V = PI x r^2 x h/3
Volume of sphere formula: 4/3 x PI x r^3
Cone: 3.14 x 9^2 x 9/3 = 763.02 cubic inches
1/2 sphere: 1/2 x 4/3 x 3.14 x 9^3 = 1526.04 cubic inches.
Total volume : 1526.04 + 763.02 = 2289.1 cubic inches
so we know the terminal point is at (9, -3), now, let's notice that's the IV Quadrant
![\bf (\stackrel{x}{9}~~,~~\stackrel{y}{-3})\impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{9^2+(-3)^2}\implies c=\sqrt{81+9}\implies c=\sqrt{90} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx%7D%7B9%7D~~%2C~~%5Cstackrel%7By%7D%7B-3%7D%29%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bhypotenuse%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7B9%5E2%2B%28-3%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B81%2B9%7D%5Cimplies%20c%3D%5Csqrt%7B90%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
34
Step-by-step explanation:
the equation is 2(lw+lh+wh)
2( 1.5 x 2 + 1.5 x 4 + 2 x 4)
Answer:
Step-by-step explanation:
From the information given:
mean life span of a brand of automobile = 35,000
standard deviation of a brand of automobile = 2250 miles.
the z-score that corresponds to each life span are as follows.
the standard z- score formula is:

For x = 34000


z = −0.4444
For x = 37000


z = 0.8889
For x = 3000


z = -2.222
From the above z- score that corresponds to their life span; it is glaring that the tire with the life span 30,000 miles has an unusually short life span.
For x = 30,500


z = -2
P(z) = P(-2)
Using excel function (=NORMDIST -2)
P(z) = 0.022750132
P(z) = 2.28th percentile
For x = 37250


z = 1
Using excel function (=NORMDIST 1)
P(z) = 0.841344746
P(z) = 84.14th percentile
For x = 35000


z = 0
Using excel function (=NORMDIST 0)
P(z) = 0.5
P(z) = 50th percentile

When your raising a negative number by the 4th power the (-) sign will be removed