The question here is how long does it take for a falling
person to reach the 90% of this terminal velocity. The computation is:
The terminal velocity vt fulfills v'=0. Therefore vt=g/c,
and so c=g/vt = 10/(100*1000/3600) = 36,000/100,000... /s. Incorporating the
differential equation shows that the time needed to reach velocity v is
t= ln [g / (g-c*v)] / c.
With v=.9 vt =.9 g/c,
t = ln [10] /c = 6.4 sec.
Answer:
1 = A 3 = b 4 = c
Step-by-step explanation:
I folded, trust me
First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
Going by what I was taught in chemistry, there would only be 1.
Answer:
{-1, 0,5}
Step-by-step explanation: