Answer:
Circuit 4
Explanation:
To know the correct answer to the question given above, we shall determine the current in each circuit. This can be obtained as follow:
For circuit 1:
Resistance (R) = 0.5 ohms
Voltage (V) = 20 V
Current (I) =?
V = IR
20 = I × 0.5
Divide both side by 0.5
I = 20 / 0.5
I = 40 A
For circuit 2:
Resistance (R) = 0.5 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.5
Divide both side by 0.5
I = 40 / 0.5
I = 80 A
For circuit 3:
Resistance (R) = 0.25 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.25
Divide both side by 0.25
I = 40 / 0.25
I = 160 A
For circuit 4:
Resistance (R) = 0.25 ohms
Voltage (V) = 60 V
Current (I) =?
V = IR
60 = I × 0.25
Divide both side by 0.25
I = 60 / 0.25
I = 240 A
SUMMARY
Circuit >>>>>> Current
1 >>>>>>>>>>> 40 A
2 >>>>>>>>>>> 80 A
3 >>>>>>>>>>> 160 A
4 >>>>>>>>>>> 240 A
From the above calculation, circuit 4 has the greatest electric current.
Explanation:
The given data is as follows.
Mass flow rate of mixture = 1368 kg/hr
in feed = 40 mole%
This means that
in feed = (100 - 40)% = 60%
We assume that there are 100 total moles/hr of gas
in feed stream.
Hence, calculate the total mass flow rate as follows.
40 moles/hr of N_{2}/hr (28 g/mol of
) + 60 moles/hr of
(2 g/mol of
)
= 1120 g/hr + 120 g/hr
= 1240 g/hr
=
(as 1 kg = 1000 g)
= 1.240 kg/hr
Now, we will calculate mol/hr in the actual feed stream as follows.

= 110322.58 moles/hr
It is given that amount of nitrogen present in the feed stream is 40%. Hence, calculate the flow of
into the reactor as follows.

= 44129.03 mol/hr
As 1 mole of nitrogen has 28 g/mol of mass or 0.028 kg.
Therefore, calculate the rate flow of
into the reactor as follows.

= 1235.612 kg/hr
Thus, we can conclude that the the feed rate of pure nitrogen to the mixer is 1235.612 kg/hr.
Answer:
Possible lowest volume = 0.19 cm
Possible highest volume = 0.21 cm
Explanation:
Given Data
uncertainty = 0.01 cm
total volume = 0.20 cm
Possible lowest volume = ?
Possible highest volume = ?
Solution:
Possible lowest volume = total volume - uncertainty
Possible lowest volume = 0.20 cm - 0.01 cm
Possible lowest volume = 0.19 cm
Possible highest volume = total volume + uncertainty
Possible highest volume = 0.20 cm - 0.01 cm
Possible highest volume = 0.21 cm
The most condensed state of matter is A. Solid Matter