Answer:
The answer is C. 0.62 years
Answer:
Stratum Granulosum
Explanation:
The stratum granulosum is a layer of the epidermis and consists of four to six cell layers. The keratinocyte appearance changes in the cell layers of stratum granulosum as some cells stop dividing and the process of keratinization starts. Keratinization includes filling the cells with the protein keratin. During keratinization, the cells flatten, and the disintegration of their nuclei and organelles occur.
Due to the loss of the nucleus, these cells cannot divide and become dead. The keratinized cells accumulate keratohyalin granules and lamellar granules. The cells of this layer have thick plasma membrane due to the binding of cytosol proteins bind to the inner membrane face and coating of the external surface of the membrane by lipids of lamellar granules.
Answer:
The two main processes of cell division, meiosis and mitosis, have in common their main steps. In both cases the metaphase ( pairing of homologous chromosomes), anaphase (migration of chromosomes to the ends) and telophase (beginning of DNA decondensation and cell division) are very similar.
The greatest difference occurs in prophase I of the meiosis, which involves the process of recombination (cross over), resulting in variability in the gametes.
Another difference is that meiosis is a reductional process, where the final result of meiosis will be gamens with half of the genetic information, and in mitosis both cells will be equal.
Answer:
The correct answer is: b. Budding of the secretory granule.
Explanation:
- In eukaryotic cells, the pathway by which secretory proteins are produced and are secreted can be explained below:
- The gene {DNA (Deoxyribonucleic Acid) sequence}, located on the genome, encoding the secretory protein is transcribed into an mRNA (messenger Ribonucleic Acid) by the RNA polymerase. This process happens in the Nucleus.
- The mature mRNA is translocated from the nucleus into the cytoplasm.
- In the cytoplasm it associates with the ribosome but translation process does not begin now.
- This is because, as the mRNA sequence has the tag of forming a secretory protein, it can be translated only when the ribosome bound mRNA sequence attaches itself to the ER (Endoplasmic Reticulum).
- On attachment to the ER, the process of translation begins and the polypeptide formed is released into the lumen of the ER.
- The process of glycosylation starts in the ER.
- The glycosylated protein is then transported from the ER in membrane bound vesicles to the cis, medial and trans Golgi, where the process of glycosylation gets completed and the protein gets completely folded.
- After this, secretory vesicles buds off from the Golgi and migrate towards the plasma membrane.
- At the plasma membrane, the secretory vesicles fuse with the plasma membrane and releases the protein out of the cell by the process of Exocytosis.
- In the given question completely folded glycosylated protein is formed but it is not secreted. This means the protein is able to reach to the Golgi bodies. But secretory vesicle formation does not take place.
- Hence the Substance X might inhibit the formation or budding of Secretory Vesicles.