<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
Answer:
there are 5 hydrogen atoms in that formula
Answer:
The velocity of the proton is 
Explanation:
The momentum of a particle is defined as the product of its mass by its velocity and we can calculate it using the following formula:
p=m*v Equation (1)
Where:
p: Is the momentum in kg*m/s
m: Is mass of the particle in kg
v: Is the velocity of the particle in m/s
Data known:
m= 1,6726 × 10^–27 kg : mass of the proton
p= 4.96 X 10^-19 kg.m/s.
We replace this data in the Equation (1):




Answer: The velocity of the proton is 