Answer:
Magnetic field lines exit out of the North pole . Magnetic field lines enter into the South pole. Magnetic field lines travel around a bar magnet in closed loops.
Explanation:
Magnetic field lines shows the direction of a magnetic force and how it acts, it gives the direction of the magnetic field at that point in time.
For a bar magnetic, the magnetic field lines runs from the north pole to the south pole, i.e. it exits the north pole and enters into the south pole. This magnetic field lines also go through the magnet forming closed loops without ends.
For a concave mirror, the radius of curvature is twice the focal length of the mirror:

where f, for a concave mirror, is taken to be positive.
Re-arranging the formula we get:

and since the radius of curvature of the mirror in the problem is 24 cm, the focal length is
Answer: 20m/s.
Explanation:
Remember the second Newton's law:
F = a*m
This is:
The net force acting on an object is equal to the mass of the object times the acceleration of the object.
In this case, we have a force of 5N pushing the object to the right.
We also have a force of 5N pushing the object to the left.
These forces act on opposite directions.
Then the net force will be equal to the difference of these forces, this is:
F = 5N - 5N = 0N
Then the net force is 0N, then we have:
0N = m*a
0N/m = 0m/s^2 = a
This means that the acceleration of the object is 0, then the velocity of the object does not change.
This means that if the object was moving at a constant velocity of 20m/s, the velocity of the object will still be equal to 20m/s. (because the net force acting on the object is zero)
The formula for kinetic energy is

. Thus, the equation for velocity is

.
Answer:
Wavelength can always be found by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation: