1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
5

Imagine two billiard balls on a pool table. Ball A has a mass of 2 kilograms and ball B has a mass of 3 kilograms. The initial v

elocity of ball A is 9 meters per second to the right, and the initial velocity of the ball B is 6 meters per second to the left. The final velocity of ball A is 9 meters per second to the left, while the final velocity of ball B is 6 meters per second to the right.
1. Explain what happens to each ball after the collision. Why do you think this occurs? Which of Newton’s laws does this represent?

2. What can you say about the total momentum before and after the collision?

3. What do you think would happen to the velocity of each ball after the collision if the masses and initial velocities of each ball were the same?

4. The mass of ball A is 10 kilograms and the mass of ball B is 5 kilograms. If the initial velocity is set to 3 meters per second for each ball, what is the final velocity of ball B if the final velocity of ball A is 2 meters per second? Use the elastic collision equation to find the final velocity of ball B. Assume ball A initially moves from right to left and ball B moves in the opposite direction. Identify each mass, velocity, and unknown. Show your work, including units, and indicate the direction of ball B in your answer.

5. If the mass of each ball were the same, but the velocity of ball A were twice as much as ball B, what do you think would happen to the final velocity of each ball after the collision? To answer this question, create a hypothesis in the form of an if-then statement. The “if” is the independent variable, or the thing that is being changed. The “then” is the dependent variable, or what you will measure as the outcome. Perfectly Inelastic Collisions Imagine two billiard balls on a pool table. Ball A has a mass of 7 kilograms and ball B has a mass of 2 kilograms. The initial velocity of the ball A is 6 meters per second to the right, and the initial velocity of the ball B is 12 meters per second to the left.
Physics
2 answers:
ratelena [41]3 years ago
8 0
1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.
Citrus2011 [14]3 years ago
5 0

Answer:

Explanation:

1) Initial momentum of A = 18 kg m/s towards the right ; Initial momentum of B is 18 kg m/s towards the left. Total momentum of the system = 0.

After the collision momentum of A = 18 kg m/s towards the left ; momentum of

B = 18 kg m/s towards the right. Total momentum = 0

. Change in momentum of A = 18 - (-18) = 36 kg m/s

Change in momentum of B - 18 - 18 = -36.

Total change in momentum= 0

Change in momentum in both occur due to two forces created at the point of interaction . They are called action and reaction forces according to newton's third law.

2. Total momentum remains zero before and after the collision.

3. Then, they would have bounced back with equal velocity to conserve momentum

4. Applying law of conservation of momentum

m₁u₁ +m₂u₂ = m₁v₁ +m₂v₂

  10x3 +5x-3 = 10x2 + 5xv₂

     v₂ = -1 m/s

Ball B will move towards the left.

5. If the collision is perfectly elastic, there will be exchange of velocity ie B will have twice the velocity than that of A after the collision.

For perfectly inelastic collision

V = (m₁v₁ + m₂v₂)/( m₁ + m₂) = 7 x6 + 2 x -12/ 7+2 = 2 m/s towards the right.

You might be interested in
A projectile is launched at an angle of 60° from the horizontal and at a velocity of
gayaneshka [121]

Answer:

60*12.0= 720 = v/60 * 12.0 squared which is 1,728

Explanation:

Horizontal velocity component: Vx = V * cos(α)

5 0
3 years ago
A car has a force of 2000N and a mass of<br> 1000kg. What is the acceleration of the<br> car?
yan [13]

Answer:

100

Explanation:

by dividing 2000N and 1000kg.

5 0
3 years ago
A tank initially holds 100 gallons of salt solution in which 50 lbs of salt has been dissolved. A pipe fills the tank with brine
olga_2 [115]

Answer:

A. 171.24 Ibs

Explanation:

To find the amount of salt in the tank,

Let Q = Amount of salt in the mixture

And let 100 + (3-2)t = 100 + t be the volume of mixture at anytime t.

Rate of gain - Rate of loss = dQ / dt

Concentration of salt = Q / (100+t)

For the linear differential equation,

dQ / dt = 3(2) - 2 [Q/ (100 + t)]

dQ /dt + Q [2 / (100 + t)] = 6

The general solution of the linear differential equation is:

Q (i.f) = ∫ A(t) (i.f) dt + C

Therefore,

i.f = e ^ ∫ P(t) dt

And P(t) = 2 / (100 + t)

i.f = e ^ ∫ 2 / (100 + t)

  = e ^ 2㏑ (100 + t)

     = e ^ ㏑ (100 + t) ^2 = (100 + t) ^2

Q(100 + t) ^ 2 = ∫6 (100 + t) ^2 dt + C

 Q(100 + t) ^2 = 2(100 + t) ^ 3 + C

  When t = 0, Q = 50

Therefore,

50( 100) ^2 = 2(100) ^3 + C

 C = -1.5 * 10 ^6

therefore, when t = 30,

Q (100 + 30) ^2 = 2(100 + 30) ^3 - 1.5 * 10 ^6

 Q (400) ^2 = 2(130) ^3 - 1.5 * 10 ^6

    Q = 171.24 Ibs

7 0
3 years ago
One of the harmonics of a string fixed at both ends has a frequency of 52.2 Hz and the next higher harmonic has a frequency of 6
Angelina_Jolie [31]

Solution :

Frequency may be defined as the number of observation or number of waves that is taken in per unit time. The unit of frequency is Hertz or Hz.

It is given that :

Successive harmonic frequencies, f = 52.2 Hz

and f' = 60.9 Hz

Therefore, fundamental frequency, F = f' - f

                                                           F = 60.9 - 52.2

                                                          F = 8.7 Hz

Therefore the string which is fixed at both the ends forms all the harmonics.

6 0
2 years ago
Say you want to make a sling by swinging a mass M of 1.9 kg in a horizontal circle of radius 0.042 m, using a string of length 0
padilas [110]

Answer: T= 715 N

Explanation:

The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:

T = mv² / r

At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.

So the kinetic energy will be the following:

K = 1/2 m v² = 15. 0 J

Solving for v², and replacing in the expression for T:

T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N

3 0
3 years ago
Other questions:
  • The principle of work states that the ratio of work output to work input is always
    15·1 answer
  • A body in simple harmonic motion has a displacement x that varies in time t according to the equation x = 5cos(π t + π/3) , wher
    12·2 answers
  • Please answer please please <br><br><br>Physics ​
    6·1 answer
  • Why couldn't the Royal Society publish Newton's Principia?
    15·1 answer
  • A(n) 930 N crate is being pushed across a level floor by a force of 400 N at an angle of 20◦ above the horizontal. The coefficie
    6·1 answer
  • What is the difference between speed and velocity?
    14·1 answer
  • A car is initially moving at 10.5 m/s and accelerates uniformly to reach a speed of 21.7 m/s in 4.34 s. How far did the car move
    7·1 answer
  • Write how gravity and the mass of the pack affected the motion of the pack when it was thrown at different forces.
    6·1 answer
  • How did potential energy get stored in the spring/pom pom system?
    9·1 answer
  • A student wants to determine the effect of mass on kinetic energy. She will drop two balls of the same size into a pool of water
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!