Answer:
five characteristics: Wavelength, Amplitude, Time-Period, Frequency and Velocity or Speed
First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used is
For constant acceleration:
a = v,final - v,initial /t
The solutions is as follows:
a = v,final - v,initial /t
3.8 = (v - 0)/2.8 s
v = 10.64 m/s After 2.8 seconds, the speed of the blue car is 10.64 m/s.
Answer:

Explanation:
As we know that electric field due to infinite line charge distribution at some distance from it is given as

now we need to find the electric field at mid point of two wires
So here we need to add the field due to two wires as they are oppositely charged
Now we will have

now plug in all data



now we have



Answer:
The car has velocity and acceleration but is not decelerating
Explanation:
Since the car is traveling at 25 mph around the curve, it has a tangential velocity. This tangential velocity is constantly changing in direction (so the car could adapt to the curve and not moving forward in a straight line), there should be a centripetal acceleration in play here. This acceleration does not slow down the car so it's not decelerating.
Answer:
initial magnetic field 1.306 T
Explanation:
We have given area of the conducting loop 
Emf induced = 1.2 volt
Initial magnetic field B = 0.3 T
Time dt = 0.087 sec
We know that induced emf is given by 


So initial magnetic field = 1.606-0.3= 1.306 T