Answer:
≈ 0.52
Step-by-step explanation:
P( head ) = 2/3 , P( tail ) = 1/3
when a head is tossed ; Gambler A wins $1
when a tail is tossed : Gambler B wins $1
<u>Determine the P( Gambler A wins the game ) if he starts with I dollars</u>
Assuming I = $1
n = 5
p ( head ) = P( winning ) = 0.66
p( losing ) = 0.33
applying the conditional probability in Markov which is ;
Pₓ = pPₓ₊₁ + (1 - p) Pₓ₋₁
P( 1) = 0.66P₂ + 0.33P₀
resolving the above using with Markov probability
P( 1 ) = 0.51613
hence the probability of Gambler A winning the game if he starts with $1
≈ 0.52
Answer:A
Step-by-step explanation:this is not true
We know is a horizontal line, so, if it passes through 1,-5, it also passes through "whatever", -5, like 20, -5 or 1000000, -5, or -100000000, -5 and so on.
so, let's pick another point say -7, -5, check the picture below, and let's check about the equation that runs through it,