We presume your cost function is
c(p) = 124p/((10 +p)(100 -p))
This can be rewritten as
c(p) = (124/11)*(10/(100 -p) -1/(10 +p))
The average value of this function over the interval [50, 55] is given by the integral

This evaluates to
(-124/55)*(ln(65/60)+10ln(45/50)) ≈ 2.19494
The average cost of removal of 50-55% of pollutants is about
$2.19 hundred thousand = $219,000
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.
He will earn $427.50 because $4.27 times 90 equals $427.50
Answer: 2.3
Step-by-step explanation:
We can use a trigonometric function to find AC
With respect to angle B (25º) BC is adjacent and AC is opposite.
The trigonometric function that relates adjacent and opposite is tangent.

Solve for opposite.

