Explanation:
It is given that,
A nerve signal travels 150 meters per second. It is the speed of the nerve signal. We need to convert the number of kilometers that the nerve signal will travel in the same time.
We know that,
1 kilometer = 1000 meter
1 hour = 3600 seconds


So, the nerve signal will travel at the rate of 540 km/h. Hence, this is the required solution.
Answer:
21 hours
Explanation:
well 30 x 20 = 600 than 21 = 630
Answer:
<em>The correct option is D) fruit</em>
Explanation:
Both the gymnosperm and the angiosperms plants produce seed. Seeds are an essential part of reproduction in plants.
After fertilization has occurred, the ripened ovule is the part which turns into a seed. The size of the seeds depends on the type if plant.
After fertilization, the ovary forms the fruit. As the ovule is present in the ovule hence after fertilization, the seed which was made from the ovule gets enclosed in the fruit which was made from the ovary.
Answer:

Explanation:
The artificial gravity generated by the rotating space station is the same centripetal acceleration due to the rotational motion of the station, which is given by:

Here, r is the radius and v is the tangential speed, which is given by:

Here
is the angular velocity, we replace (2) in (1):

Recall that
.
Solving for
:

Answer: i think c
Explanation:QA: “What is ordinary glass made of ?”
Glass is mostly silica, or silicon dioxide, present as quartz in many types of sand. Pure silica forms a highly transparent glass, but has a very high melting or softening temperature, around 1700°C. Even at such high temperatures it is highly viscous and difficult to work. Its use is largely confined to applications requiring high transparency to ultra-violet and infra-red radiation, stability at elevated temperatures or low thermal expansion coefficient.
“Ordinary glass” windows and drinking vessels are typically made from soda-lime glass, containing silica with around 25% sodium, calcium and other oxides, which together reduce the softening temperature to roughly 500–600°C