Answer:
When the ball is held motionless above the floor, the ball possesses only GPE energy.If the ball is dropped, its GPE energy decreases as it falls.If the ball is dropped, its KE energy increases as it falls.
Explanation:
If the ball is held motionless, then its kinetic energy is equal to zero, since kinetic energy depends on the velocity. And the ball is held above the ground, which means it possesses gravitational potential energy.
If the ball is dropped, its height will decrease, therefore its gravitational potential energy will decrease. Along the way, the ball will be in free fall, and therefore its velocity will increase, hence its kinetic energy.

Answer:
the signs of heat and work are; -Q and -W
Explanation:
The first law of thermodynamics is given by; ΔU = Q − W
where;
ΔU is the change in internal energy of a system,
Q is the net heat transfer (the sum of all heat transfer into and out of the system)
W is the net work done (the sum of all work done on or by the system).
Now, The system in this case is the tire and since the air gets warmer, heat must have left the system. Therefore Q is negative (-Q).
Since work is done by the system, W remains negative.
Thus, the signs of heat and work are; -Q and - W
Gravity pulls to the centre of the earth. A ship floats in water because the water pushing it up (upthrust) is equal to the force<span> of gravity (weight) pulling it </span>down<span>. Friction also occurs when objects move through air. This is </span>called<span>air resistance.</span>
I think 36m/12s because 3×12 =36