Answer:
a). M = 20.392 kg
b). am = 0.56
(block), aM = 0.28
(bucket)
Explanation:
a). We got N = mg cos θ,
f = 
= 
If the block is ready to slide,
T = mg sin θ + f
T = mg sin θ +
.....(i)
2T = Mg ..........(ii)
Putting (ii) in (i), we get



M = 20.392 kg
b).
.............(iii)
Here, l = total string length
Differentiating equation (iii) double time w.r.t t, l, h and h' are constants, so


.....................(iv)
We got, N = mg cos θ

∴ 
................(v)
Mg - 2T = M

(from equation (iv))
.....................(vi)
Putting (vi) in equation (v),

![$\frac{g\left[\frac{M}{2}-m \sin \theta-\mu_K m \cos \theta\right]}{(\frac{M}{4}+m)}=a_m$](https://tex.z-dn.net/?f=%24%5Cfrac%7Bg%5Cleft%5B%5Cfrac%7BM%7D%7B2%7D-m%20%5Csin%20%5Ctheta-%5Cmu_K%20m%20%5Ccos%20%5Ctheta%5Cright%5D%7D%7B%28%5Cfrac%7BM%7D%7B4%7D%2Bm%29%7D%3Da_m%24)
![$\frac{9.8\left[\frac{20.392}{2}-10(\sin 30+0.5 \cos 30)\right]}{(\frac{20.392}{4}+10)}=a_m$](https://tex.z-dn.net/?f=%24%5Cfrac%7B9.8%5Cleft%5B%5Cfrac%7B20.392%7D%7B2%7D-10%28%5Csin%2030%2B0.5%20%5Ccos%2030%29%5Cright%5D%7D%7B%28%5Cfrac%7B20.392%7D%7B4%7D%2B10%29%7D%3Da_m%24)

Using equation (iv), we get,

By using the equation speed = distance/time we can solve for distance. The speed is 4 m/s and the time is 12 seconds. We need to rearrange the equation to Speed * Time = distance. 4(12) = 48; 48 = distance. The cliff is 48 meters high.
Answer:
Explained below
Explanation:
Generally speaking, we know in physics that Electric field lines are lines which usually start at positive charges and deflect away from them to terminate at the negative charges. Meanwhile Equipotential lines are lines that are used to connect points located on the same electric potential.
Finally, in conclusion, electric field lines are usually lines that go through in a perpendicular manner across every equipotential lines.
Answer:
You could put a pressure stick against the pressure and see the pressure or estimate it from the power its coming out.
Explanation: