The force required to pull the two hemispheres is 46622.72N
<h3>Calculation and Parameters</h3>
( Note: 1 millibar=100 N/m2. One atmosphere is 1013 millibar = 1.013×105 N/m2 ]
The contact area between the hemispheres is (pi x 0.400^2) = 0.5024m^2.
Pressure difference = (940 - 12)
= 928 millibars.
(928 x 100)
= 92,800N/m^2.
Therefore, the required force to pull the two hemispheres is
(92800 x 0.5024)
= 46622.72N.
Read more about force here:
brainly.com/question/15300777
#SPJ1
Answer:
33= 0+10 * t so t = 33 / 10 = 3.3 hrs
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance



Answer:
The magnitude of the net force is 5430N
Explanation:
I suggest to define the axes as aligned to the axis of the plane. This will require you to decompose only one vector, namely the Weight. We need two components of the W force: one in horizontal direction of the plane, the other perpendicular to it. Through a simple triangle argument you will se that the plane-horizontal component of W is

acting in the direction of the Drag, and the plane-perpendicular component is:

with negative sign since it counteracts the Lift.
So the components of the netforce F are:

The magnitude of the net force is:
